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INTERPOLATING BLASCHKE PRODUCTS

DONALD E. MARSHALL AND ARNE STRAY

We prove that any bounded analytic function on the unit
disk D which extends to be continuous on dD \ E, for some
set E of measure 0, can be uniformly approximated by finite
linear combinations of interpolating Blaschke products.

Let H°° denote the set of bounded analytic functions defined on the unit
disk, D. Each / G H°° has a non-tangential limit at almost all eiθ G dD
which we call f(etθ), and

sup|/(*)| = |l/ll«,
ZED

where ||/||oo is the L°° = L°°(dD,dθ) norm of the non-tangential limit /.
Thus we can view H°° as a uniformly closed subalgebra of L°°. An inner
function is a function / G H°° with \I(eiθ)\ = 1, a.e. dθ. For example
S(z) = e ^ is an inner function, though it has radial limit 0 at ζ = 1.
Inner functions are of central importance in the study of analytic functions
on D. For example, Beurling used inner functions (and coined the name)
to characterize the translation invariant subspaces of the Hardy space H2.
Rudin and Carleson used inner functions to characterize the ideals of the
disk algebra, and Newman used them to characterize the Shilov boundary
of if00.

If {zn} C D with Σ n ( l — \zn\) < oo then a Blaschke product with zero set
{zn} is an inner function of the form

1 - znz
n=l n

where cn are constants, with \cn\ — I, chosen so the the infinite product
converges. Blaschke products are important because they characterize the
zero sets of bounded analytic functions: if / G H°° then there is a Blaschke
product B and a non-vanishing g G H°° with / = Bg and \f(eiθ)\ = |<?(ei0)|
almost everywhere on 8D. Frostman proved that if I is inner then (/—λ)/(l —
XI) is a Blaschke product for λ in a dense subset of D (the exceptional set
in fact has logarithmic capacity 0). Letting λ -> 0 shows that every inner
function can be uniformly approximated by Blaschke products. Because of
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their importance in this subject, the problem of characterizing the linear
span of the inner functions arose in 1965. Douglas and Rudin proved that
every unimodular function in L°° can be uniformly approximated by the
quotient of two inner functions. Since every L°° function of norm smaller
than 1 is the average of two unimodular functions, finite linear combinations
of quotients of Blaschke products are dense in L°°. Later Hoffman proved
that Blaschke products separated the points of the maximal ideal space of
H°°. In [Ml] it was proved that the unit ball of H°° is the norm closed
convex hull of the set of Blaschke products. See [G] and [H] for these and
other background results about inner functions and Blaschke products.

Important developments in function theory on the disk have come from
considering a special kind of zero set, called an interpolating sequence. The
pseudo-hyperbolic metric on D is given by

p(z,w) = z — w
1 — wz

A sequence {zn} C D is called an interpolating sequence if

(1) w

An interpolating sequence is the zero set of a Blaschke product B and the
condition (1) can be rephrased in terms of B since

Such a Blaschke product is called an interpolating Blaschke product Carleson
proved that if {zn} is an interpolating sequence and if {an} G ̂ °°, then
there is an / G H°° "interpolating" the values an at zn. In other words,
f(zn) = an for all n. The formulation of interpolating sequences in terms
of B' is important because the quantity (1 — |^|2)|B ;(^)| is the conformally
invariant derivative of 2?, in the following sense: Let z = r(w) and C(w) =
B(τ(w)), where r is a conformal map of D onto D. Then (1 - |s|2)|j?'(s)| =
(l-\w\2)\C'(w)\.

Carleson's proof of his interpolation theorem gave an important geometric
characterization of interpolating sequences. A measure μ defined on D is
called a Carleson measure if there is a constant K < oo so that for all
approximate squares

Q = {reiθ : 1 - a < r < 1, θ0 < θ < θ0 + a}

the following estimate holds:

μ(Q) < Ka.
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A sequence {zn} C D is interpolating if and only if there is an ε > 0 such
that

(3) p{zn,Zm) > ε for all n φ m and

(4) ^,(1 — \zn\
2)δZn is a, Carleson measure,

where δz is unit point mass at z. Carleson measures and interpolating se-
quences also proved to be of great importance in the proof of the Corona
theorem, by Carleson [Ca], and in finding L°° solutions to d-problems by
Jones [J2], for example. Carleson measures, were also fundamental in the
development of BMO by C. Feίferman [Fe], Jones [J3] and others. Car-
leson measures can be obtained as weak-* limits of measures associated with
interpolating sequences [J3].

The problem of characterizing the linear span of the interpolating Blaschke
products arose in 1978 [Jl]. See also [G, p. 430]. Ziskind [Z] earlier proved
that interpolating Blaschke products characterize the Shilov boundary of
i ϊ 0 0 , the natural analog of Newman's theorem. Another indication that the
interpolating Blaschke products span a "large" subset of H°° is the Chang-
Marshall theorem [Ch, M2]: Every closed subalgebra of L°° containing H°°
is generated by H°° and a collection of complex conjugates of interpolat-
ing Blaschke products. The analog of Prostman's theorem for interpolating
Blaschke products is not true, however, since Kahane [K], Piranian [P], and
Shapiro [S] proved there are inner functions /, which are not finite Blaschke
products, such that

(5) l im( l- | z | 2 ) | / ' (z) | = 0.

Since (I—λ)/(l — XI) must have this same property, it is never an interpolat-
ing Blaschke product. In [Jl] Jones proved the analogs of the Douglas-Rudin
and Hoffman theorems mentioned above: Every unimodular L°° function can
be uniformly approximated by a quotient of interpolating Blaschke products
and the interpolating Blaschke products separate the points of the maximal
ideal space of H°°.

Let IBP denote the uniform closure of finite linear combinations of in-
terpolating Blaschke products:

ί
IBP = cl < ^2 anBn : Bn is interpolating and an £ C

L=i

1> .
J

While we cannot solve Jones' problem of characterizing IBP, we can prove
that an H°° function is in XBP if it is not too "pathological". Let HZ denote
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the bounded analytic functions on D which extend to be continuous on on
D \ E for some E C dΌ with \E\ = length(E) = 0. These are precisely the
bounded analytic functions with Riemann integrable boundary values, and
hence the name 1Z1. By Corollary 1.3 of [DGG], 111 is the uniform closure
of the set of bounded analytic functions that extend to be continuous on
D \ E for some closed set E C dD with \E\ = length(E) = 0.

Theorem. Til C IBP.

With different techniques, and at the same time, A. Nicolau proved that
a Blaschke product which is continuous on D \ E for some closed set E C 8D
with \E\ = length(E) = 0 is in the algebra generated by the interpolating
Blaschke products. We remark that Wolff [unpublished] has shown that
there are Blaschke products in HZ satisfying (5) above.

Lemma 1. IBP is an algebra.

Proof of Lemma 1. It suffices to show that the product of two interpolating
Blaschke products is in IBP. Suppose Bλ and B2 are interpolating Blaschke
products with zero sets {an} and {bn} respectively, then {zn} = {an} U {bn}
satisfies (4). It is possible to move the {bn} slightly so as to satisfy (3)
and still have a Blaschke product close to B1B2. The {bn} cannot just be
arbitrarily moved, for example if an — bn — 1 — 2~n and if B3 is the Blaschke
product with zeros ζn = zn + iδ2~n, where δ > 0, then ||£?ii?2 — -81-83!I = 2.

By (3), we may suppose that the disks Dk = {z : p(z,ak) < δ} are
disjoint and each Dk contains at most one bn. By Earl's proof of Carleson's
interpolation theorem [E], if δ is sufficiently small, there is a constant ϋί,
0 < K < 1 so that

(6) \Bx(z)\>Kδ

o n Ω ( j = D \ UkDk. Moreover, we can move some of the zeros of Bλ to B2 so
that we can assume that for each zero ak of Bu there is a zero dk of B2 with
p(ak,dk) < Kδ/A. By Prostman's theorem, we can choose ε, with Kδ/A <
ε < Kδ/3 so that C3 = (Bλ - ε)/(l - eBx) is a Blaschke product. Then C3

has exactly one zero in each "annular" region Ak = {z : ε < p(z,ak) < δ}
and no other zeros. To see this, first note that

(7) | | σ 8 - B 1 | | o o < ϊ ^ -

So if C3(z) = 0, then \Bt(z)\ < Kδ and hence by (6) z <£ Ω*. Also if
C3(z) = 0 , then

ε = \Bx{z)\ = p(B1{z),B1(an)) < p(z,an)
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by Schwarz's lemma. On dDk, by (6) and (7),

\C3(z)-B1(z)\<\B1(z)\,

so Rouche's theorem, C3 has exactly one zero in each Dk and hence exactly
one in each Ak. Thus />-distance between the zeros of <73 and the zeros of
B2 is at least p(ε,Kδ/4) > 0. It is not hard to verify, using (3) and (4),
that B = C3B2 is interpolating and

Since 5, and hence ε, can be chosen arbitrarily small, this proves the lemma.

D

We remark that since z E IBP

n = l

by Lemma 1.
The estimate in the next Lemma is the key to the proof of the theorem.

We transfer the problem from the disk to the upper half plane IHL In this
context, the pseudo-hyperbolic distance is given by

p{z,w) = z — w
7

z — w

z, w £ H, and a Blaschke product is given by

π = l n

where Imzn > 0, and {cn} are constants of absolute value 1 chosen so that
the product converges. The conformally invariant derivative of B on the
upper half plane is Imz |JB'(2)|, and B is interpolating if and only if

(8) inf 2 lmzn\B'(zn)\ = inf Π p(zn,zm) > 0.
n m •*"*•

nφm

Lemma 2. Suppose B is a Blaschke product on HI with zeros {zn} C ΉΠ{z :
Rez < 0}. Ifδ>0 and 0 < arg z < f - δ, then

Ίmz \B'{z)\>C\B(z)\log l

\B(z)\'
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where C is a constant that depends only on δ

Proof of Lemma 2. Note that for some ε = ε(δ) > 0, p(z, zn) > ε. Thus

i o g

- C i

and

(10) π \[Lmz) 2

n = l

ImZn 2i& ~

- Zn

B(z) ^ \z-~Znγ z-zn •

By our assumptions on z and zn, (see Figure 1)

0 < θ = arg [ n ) < π - 2δ.
\z- znj

Thus if ζ = e-iδ,

and since l^^ l > 1,

(11)

arg

Figure 1.

'2i(z-zn) \l πf2i(z-zn

\ z ~ zn

By (9), (10) and (11)

Imz
B(z)

B'(z)ζ Imz lmzn C2
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Lemma 3. // B is a Blaschke product which is continuous on dD \ E,
where E is a closed set of length 0, then B £ IBP.

Proof of Lemma 3. Transfer the problem to the upper-half plane El and
without loss of generality, suppose the zeros {zn} of

n = l

are contained in the unit square Qo = {x + iy : 0 < x < 1, 0 < y < 1}. A
dyadic square Q is a square sitting on R of the form Q = {x + iy : £ < x <
^ r , 0 < y < 2~n} where k and n are integers. Let {Qj} be the set of dyadic
squares which do not contain any zero of B. The region Q0\UQj contains all
zeros of B and by our assumption on J9, the curve Γ = d(Q0 \ UQj) satisfies

(12) length(Γ Π E) = 0.

Note that arc-length on Γ is a Carleson measure. Given ε > 0, sprinkle
points {ζn} on Γ such that

(13) ρ(ζn, ζm) > ε for all n φ m and

(14) if ζ e Γ Π H then p(ζ, ζn) < 2ε, for some n.

As in Ziskind [Z] (see also [G]), the Blaschke product Bι with zeros {ζn} is
interpolating. Moreover

<2ε onQ0\UQ j ,

by (12), (14) and the maximum principle.
There is a Ci, 0 < Ci < 1, so that if p(z,Q0 \ UQj) > cx and z E Qo?

then z lies in a disk D centered on M with D C UQj. Thus there is a
σ > 2ε and δ > 0, so that if \B{z)BI{z)\ > σ then there is a linear fractional
transformation ψ of H onto M so that φ(Qo \ UQj) C {z : Rez < 0} and
0 < aigφ(z) < I — δ. A similar argument works for z £ Qo.

By (8), Lemma 2 and Frostman's theorem

is an interpolating Blaschke product for some λ > σ. By Lemma 1 and the
comment immediately after Lemma 1,

λ)n~xjDn elBP.
n=l
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By the arguments used in the proof of Lemma 1 and Frostman's theorem,

Bj-η

is an interpolating Blaschke product for some arbitrarily small [77). In the
proof above that D is interpolating, we really only needed that J5/ is small
on Γ and that the zeros of Bι are hyperbolically close to Γ. Thus

. 1 -

and
B = -(55/ - C(l - ηBΛ) e IBP.

V
D

Proof of the Theorem. By the comment after the definition of TZ1 and since
1 G XJ5P, it suffices to approximate only / € H°° such that / extends
to be continuous on D \ E, where E is closed and \E\ = 0, and such that
11/ — |||00 < \ Let CE denote the closed subalgebra of L°° generated by
quotients of Blaschke products which extend to be analytic on 3D \ E. In
other words, CE is the set of uniform limits of finite linear combinations of
quotients of Blaschke products which are analytic on dD \ E. Since each
point of {z : \z — | | < | } is the average of two unique points on 3D, we
can write / = (uλ + u2)/2 where uλ and u2 are unimodular functions on
ΘD which are continuous on dD \ E. By Theorem 12.1 [DDG], we have
/ G CE Let A be the uniformly closed algebra generated by H°° and CE It
is shown in [MS] that the inner functions which are invertible in Λ belong
to CE By Theorem 4.1 [CM], / can be uniformly approximated by convex
combinations of Blaschke products in H°° Π CE The Theorem now follows
from Lemma 1 and Lemma 3. D

We remark that Til is a uniformly closed subalgebra of H°° with inner-
outer factorization. See [MS].
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