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BRAID COMMUTATORS AND VASSILIEV INVARIANTS

TED STANFORD

We establish a relationship between Vassiliev invariants and
the lower central series of the pure braid group, and we use
this to construct infinite families of prime knots or links whose
invariants match those of a given knot or link up to a given
order.

Introduction.

Theorem 1. Let L and L' be two links which differ by a braid p € P£, the
nth group of the lower central series of Pk, the pure braid group on k strands.
Let v be a link invariant of order less than n. Then v(L) = v(L').

In Section 1 we will define the order of a link invariant, and also define
what it means for two links to differ by a braid p. As an example, if x
represents the closure of a braid x, and b and p are any two braids with the
same number of strands, then & and pb differ by p. Theorem 1 gives us a
way to modify links without changing their invariants up to some order. We
shall show that these changes can often be guaranteed to give distinct links.

Falk and Randell proved in [FR] that the intersection of the lower central
series of Pk is'trivial, that is, Γi^Pl — {!}, so that Theorem 1 does not give
rise to an easy way of constructing distinct links, all of whose finite-order
invariants are equal. We will, however, prove the following in Section 2.

Theorem 2. For any link L and any positive integer n there exist an infinite
number of prime, nonsplit, alternating links L1, {each with the same number
of components as L), such that v(L') = v(L) for any link invariant υ of order
less than or equal to n.

Infinite families of knots whose invariants match up to a given order have
been constructed by Ohyama in [O], and also follow from the work of Lin (see
[B] and [L2]) and Gusarov (see [Gu2]). However, all of these examples have
been composite knots. Recall that a link L C S3 is composite if there exists
a two-sphere R embedded in S3 which intersects L in exactly two points,
and such that R does not bound a 3-ball B with B Π L isotopic inside B to
an unknotted arc. L is prime if it is not composite. L is split if there exists
a 2-sphere R in embedded in S3 such that R does not intersect L, and R
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does not bound a ball B with BΠL = 0. L is alternating if it has a diagram
D such that as one traverses any component in the diagram, the crossings
alternate between over and under.

Knot invariants of finite order are called Vassilieυ invariants. A ratio-
nal Vassilieυ invariant is a Vassiliev invariant taking values in Q, the field
of rational numbers. It was proved by Birman and Lin (see [BL]) that if
the substitution t = ex is made into the Jones polynomial JL(^)? then the
ith coefficient Vi(L) of the resulting power series JL(CX) = Y^Qvi{L)xi is
a rational Vassiliev invariant of order i. It follows directly from this the-
orem that there are rational Vassiliev invariants of arbitrarily high order.
However, rational Vassiliev invariants form a graded ring (in fact, a Hopf
algebra), and there are many finite-order invariants which are products of
invariants of lower orders, and these do not provide any power to distinguish
links not already available to their lower order factors. A Vassiliev invariant
v is called primitive if it is additive under connected sum of knots, that is,
v(K1^K2) = v{Kι) + v(K2). It turns out that all the rational Vassiliev
invariants are polynomials in the primitive ones. See [B-N], [Gu2].

Corollary 2.1. There are primitive Vassiliev invariants of arbitrarily high
order.

This follows from Theorem 2, and from the fact that the Jones polyno-
mial is never trivial (ie, equal to 1, its value on the unknot) on a nontrivial
alternating knot (see [Mu]). For if there were no primitive Vassiliev in-
variants of order > n, then we could construct an alternating knot with
all of its finite-order invariants equal to 0, and therefore with trivial Jones
polynomial.

Except when otherwise specified, links in this paper can be considered to
be either all oriented or all unoriented. We will denote by σ; the standard
generator of the braid group Bk which switches the ith and (i + l)st strand
of the braid with a positive crossing. A tangle diagram will be a link diagram
with a single S1 boundary, which some of the strands in the diagram may
intersect transversely. We will sometimes blur the distiction between braids
and braid words, and between links and link diagrams when no ambiguity
can result.

The author wishes to thank Professor Joan Birman for many helpful con-
versations.

1. Invariants of finite order.

A link invariant υ taking values in an abelian group A is said to have finite
order if there exists a positive integer n such that for any link diagram D
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with n + 1 chosen crossings numbered from 1 to n + 1

(l.i) Σ (-i)#(iMA) = o

where #{i) is the cardinality of the set i, and Di is obtained from D = D$ by
changing each crossing whose number is in i. The smallest such n is called
the order of v, and if there is no such ra, then v is said to have infinite order.
In the case of oriented links, one often defines an invariant υ of finite order
to be such that there exists a positive integer n satisfying 1.1, only now the
jih crossing of Di is taken to be positive or negative according to whether
j G i or j £ i. It is clear that this is the same as our definition, since the
quantity on the left side will differ at most by a sign change between the two
cases.

Finite-order invariants of oriented links come in abundance from the Jones
polynomial and its generalizations. (See [B], [BL], [Gul], and [LI].) The
space Vn of rational invariants of order less than or equal to n can be made
finite-dimensional either by restricting oneself to links with a fixed number
of components or (equivalently, see [S]) by requiring v to be invariant un-
der the addition of a disjoint and unknotted component. Finite-order knot
invariants were introduced by Vassiliev in [V] using singularity theory and
algebraic topology, and have since been derived, analyzed, and generalized
using several other approaches. (See [BL], [B-N], [Gu2], and [S].)

By a tangle map T : Bk -» {link types} we mean for some fixed k a fixed
way of putting a braid b G Bk into a tangle diagram so as to get a link
T[b). (This is well-defined because the braid group relations are a subset of
Reidemeister moves on link diagrams.) See Figure 1.1. In the case where
T : Bk -> {oriented link types} then we do not assume that T preserves any
orientation on the strands inherited from the braid group, and in fact the
strands of b in T(l) need not have their orientations parallel to each other.
Given a tangle map T and a link invariant v, we denote by fViT the linear
extenion of υ o T : Bk -> Q to QBk.

Two links L and L' are said to differ by a braid b if there exists a tangle
map T such that L = T(l) and L' = T(6). If L and L' differ by 6, then V
and L differ by 6"1, and "differing by 6" is not necessarilly a reflexive relation
on the set of links. However, we are concerned with links which differ by an
element of a particular subgoup of the braid group, so this is not a concern.
Note that when 6 is a pure braid then L and L' will have the same number
of components.

Consider the ideal J G QBk generated by {(σ^ — σ^1) : 0 < i < k}.

Lemma 1.1. Let υ be a link invariant of order n, and let T be a tangle
map. Let x G J n + 1 C QBk. Then fv,τ(x) = 0.
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Proof. J n + 1 is l inearly generated by expressions of t h e form

wo(σmi - . . . wn(σ
mn+1

where each σmj is one of t h e s t a n d a r d b r a i d generators a n d each Wj G Bk.
Consider a d i a g r a m for t h e bra id b = woσmiwισm2... crmn+1wn+1 where each
σmj is represented by a single crossing (wi thout any cancel lat ion w i t h Wj-ι
or Wj). Let D b e a d i a g r a m of fViτ{b) which conta ins t h e chosen d i a g r a m
for 6, a n d for i C { 1 , 2 , . . . n + 1} let Dι b e t h e d i a g r a m o b t a i n e d from D
by changing t h e crossings corresponding t o σmj for all j G i. Now it is clear
t h a t fV)τ(b) is equal t o t h e left-hand side of 1.1. D

ΓP\

T(σ2) Ί

Figure 1.1

Recall that the lower central series G = Gι,G2,G*,... of a group G
is given inductively by G n + 1 = [G,G% where [H,K] = (xyχ-λy~ι : x G
H andyeK).

Lemma 1.2. Let p G P%, the nth group of the lower central series of-the

pure braid group Pn. Then p — 1 G Jn.

Proof. If p is a pure braid, then p can be "unbraided" by a series of crossing

changes from σf to σ~ι or vice-versa. Hence p — 1 G J. If p G P^, then

= [Pi >
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where p{ E Pk and qt E P£ *. We have

ΓV
because pi — 1 E J and by induction ^ — 1 E Jn - 1 D

The ideal Pk ΠJ is called the augmentation ideal of Pfc, and the group (1 +
Jn)ί)Pk is called the nth dimension subgroup of Pk. Lemma 1.2 corresponds
to a well-known fact in group theory, that the nth dimension subgroup of a
group G is a subgroup of Gn, the nth group of the lower cenral series. See
[LS].

Theorem 1. Let L and V be two links which differ by a braid p E P£, Let
υ be a link invariant of order less than n. Then υ(L) = v(L').

Proof. There exists a tangle map Γ such that Γ(l) = L and T(p) = Lf. By
Lemmas 1.1 and 1.2, fVtT{p) - fVtT(l) = fVyT(p - 1) = 0. D

2. Constructing alternating links.

Given a subset S oΐ a group G, let W(S) be the set of words xxx2 . . . xn-> for
some positive integer n with x{ E S. Given any link L and a positive integer
n, we will to make a series of changes to L. Each change will not affect the
value v(L) of any invariant υ of order less than or equal to n, and when we
are finished, L will be an alternating link. We will work with a braid word
w E WΓ({σ!, σ2,... σ^_i, σf \ σ^"1,... cr^i1}) which represents a braid whose
closure w is L. Our objective is to modify w until the odd a{ always occur
with positive exponent and the even σ̂  always occur with negative exponent,
that is, until w E W({σi : i odd} U {σ^1 : i even}). This will ensure that w
is an alternating link. See Figure 2.1.

Figure 2.1 Figure 2.2
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The inspiration for the following lemmas came from [BM]. We shall use
the following simplified notation in the proofs. In the braid group Bk, let
a = σ i5 b = σi+1. Then aba = bab. Let x — (aba)x(aba)~1. Then a — b and
5 = α, so if x G W({a,b-λ}) then x G ̂ ({α- 1 ^}), and if x G W({a~\b})
then x G Wifab-1}). Also if x G W^a.b-1}) then x'1 G W({a~\b}) and
if x 6 W({a~\b}) then ar 1 G W ^ ί r 1 } ) .

Lemma 2.1. For any n > 0 and 0 < t < fc — 1, £Λere exzŝ  m > 0, r > 0,
and x G ̂ ( { ^ a ^ } ) 5?/cΛ Λ̂aί ί< = ^ ^ a ^ i G P^.

Proo/. Suppose inductively that ί< = amxab~r G ̂ ({α^- 1 }) and ί< G Pfc

n,
with m > 0 and r > 0. Form the commutator

[^,62] = amxab-rb2bra-ιx~ιa-mb-2

To begin the induction we need only note that there are lots of pure braid
words in W({α, 6"1}) that begin with a (α2, for instance). D

Remark 2.1. One can also construct words in W^σ^σ^}) Π P£ that
begin with σ^+t.

Remark 2.2. Note that U is represented by a non-trivial alternating word,
but we have not proved that U is a non-trivial braid. It is true that Uφl,
and this will be seen in the proof of Theorem 2, but we don't need to assume
it here.

Lemma 2.2. For any n > 0 and 0 < i < k — 1, there exists Ui G

ua^x}) with Uiiσiσ^σi) G P*n.

Proof. By Lemma 2.1, there exists U = amxab-r G W({α, 6"1}) ΠP^" 1 , with
m > 0 and r > 0. Form the commutator

[ίΓ2,^] = b-2amxab-rb2bra-ιχ-1a-m

= b-2arnx(aba)a-1ba-1χ-1a-m(aba)-1{aba)

= b~2arnxa-1ba-1χ-1a-m(aba).

This completes the proof. D

Note that u~[ι G W^σi^σ^})^ and (σiσi^σi)'1!!'1 G P*1 because the
subgroups of the lower central series are fully invariant.

Theorem 2. For any link L and any positive integer n there exist an infinite
number of prime, nonsplit, alternating links Lr, such that v(L') — v(L) for
any link invariant v of order less than or equal to n.
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Remark 2.3 The L and L' constructed will have the same number of
components, so that the theorem remains true if "link" is replaced by "knot".

Proof. Let L be represented as the closure w of some braid word w on k > 2
strands. To simplify the argument, assume that k is odd. Suppose that
w = Z\σ~[λz2, with i odd. Replace w with

z1ui(σiσi+1σi)σ7ι(σiσi+1σi)-ιu7ιz2 = zιuiσ^1ΰ71z2

where Ui is as in Lemma 2.2. By Theorem 1, v(w) is unchanged by this
modification. Repeating the process, we can eliminate all σ^ i odd, that
occur in w with negative exponent. Similarly, whenever w = Zισi+ιz2, with
i odd, replace w with

/ \ / \_i i 1
ZiUiyJiai+iGijOi+iyJiOi+iGi) Ui Z2 — Z\UiOiUi Z2.

Call the result of all these modifications 27. L' is now given by an al-
ternating diagram w. An alternating diagram D is said to be reduced if it
contains no crossing as in Figure 2.2. D is said to be prime if there does not
exist a simple closed planar curve C that intersects D in exactly two points
with D non-trivial (as a diagram) on both sides of C. D is connnected if it is
connected as a projection onto M2. Menasco proved in [Me] that a reduced,
connected, prime alternating diagram represents a prime, non-split link. Let
a be the braid word ί i t j 1 . . . tjb-2*ib"-i> where U is as in Lemma 2.1. Let β be
the braid word σxσ2

ι... σk-2^k-ι It is easy to verify that β2 is a reduced,
connnected, prime, alternating diagram, and that none of these four proper-
ties will change if we insert some word x 6 W({ai : i odd} U {σ^1 : i even})
anywhere into β2. Since a2w can be built up from β2 by adding a sequence
of such words, it follows that a2w is a reduced, connected, prime, alternating
diagram.

Murasugi proved in [Mu] that a reduced alternating link diagram has
minimal crossing number, so we can produce an infinite number of distinct V
by repeatedly inserting some ί< from the lemma into w, creating a sequence
of reduced, connected, prime, alternating diagrams with more and more
crossings. D
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