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RATIONAL POLYNOMIALS WITH A C*-FIBER

SHULIM KALIMAN

Up to polynomial coordinate substitutions, we find the list
of all rational primitive polynomials in two complex variables
whose zero fiber is isomorphic to C*.

1. Introduction.

Let p(z,y) and g(z,y) be polynomials in two complex variables. We shall say
that these polynomials are equivalent if there exists a polynomial automor-
phism « of C? and an affine automorphism 3 of C for which p = Sogoa.
Consider the set of polynomials which have a fiber isomorphic to a given
algebraic curve R. It is natural to look for a list of non-equivalent polyno-
mials such that every polynomial from this set is equivalent to one of the
polynomials from the list. If such a list exists we shall say that there is a clas-
sification of polynomials with this fiber R. This problem is equivalent to the
problem of classification of all smooth polynomial embeddings of R into C?
up to a polynomial automorphism. The remarkable Abhyankar-Moh-Suzuki
theorem [AM], [Sul] says that all smooth polynomial embeddings of the
complex line into C? are equivalent to linear embeddings. Moreover, V. Lin
and M. Zaidenberg [LZ] obtained the classification of polynomial injections
of C into C? (i.e. they found a description of all polynomials whose zero
fiber is homeomorphic to C). Later W. Neumann and L. Rudolph [NR]
reproved these theorems and W. Neumann obtained the classification for all
polynomials whose zero fiber is diffeomorphic to a once punctured Riemann
surface of genus < 2.

The papers [AM], [NR], and [N] use the following theorem [AS]: if the
zero fiber of a polynomial is a once punctured Riemann surface, then every
other fiber of this polynomial is once punctured. The situation is drastically
changed when the zero fiber R has two or more punctures. The behavior
of punctures on the other fibers becomes more complicated and there is no
analogue of the above theorem.

The Lin-Zaidenberg theorem is based on the following elegant fact. If a
polynomial has at most one degenerate fiber (and it is so in the case of a
contractible fiber) then the polynomial is isotrivial, i.e. its generic fibers
are pairwise isomorphic. Isotrivial polynomials form a narrow class and its
classification was obtained later in [K1], [Z1].
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In this paper we shall study the case when R is isomorphic to C* (the
simplest case of a twice punctured surface). None of the above approaches
works. The number of punctures on the generic fiber of the corresponding
polynomial may be arbitrarily large and the polynomial may have a sec-
ond degenerate fiber. This makes the problem difficult and we can obtain a
classification for polynomials with a C*-fiber only under some additional con-
ditions on the generic fibers of polynomials. Namely, we assume that these
polynomials are rational, i.e. their generic fibers are m times punctured Rie-
mann spheres. Even under this assumption the problem is complicated and
only the cases when m = 1 or 2 were considered earlier [Sal, Sa2, Z1, Z3].
The final classification for m = 2 was obtained in [Z1, Z3] by Zaidenberg.
“Deformations” of Zaidenberg’s polynomials were used later [ACL] to ob-
tain examples of polynomials which are not equivalent to linear ones and
have all fibers smooth and irreducible. These examples are important in
connection with the Jacobian conjecture. P. Cassou-Nogueés also noted that
the coordinate functions in the recent counterexample of Pinchuk [P] to
the real Jacobian Conjecture are deformations of Zaidenberg’s polynomials.
This shows that the study of rational polynomials with a C*-fiber may lead
to interesting consequences. In this paper we shall prove the following fact.

Main theorem. Let p: C2 — C be a primitive rational polynomial whose
zero fiber Ty is isomorphic to C*. Suppose that Ty is degenerate. Then
there is a polynomial coordinate system (z,y) in C? for which the polynomial
p(z,y) coincides with one of the following forms

(1) a(y"" " + (Y +2)™) /2"

(2) a(@™™ ! + (Y +z)™) /2™

where a € C*,n and m are natural, m > 2,n > 1, in formula (2) n > 2
in the case of m = 2, P(z,y) = ™Y+ @pyz™ ' +--- +ayz — 1, and all
coefficients a,,_1,... ,a; are determined uniquely by the condition that each
of the above forms must be a polynomial.

Let us describe briefly the scheme of the proof. The technique from [Z1],
[Z2], and [Sal] in combination with the Ramanujam-Morrow Theorem [R],
[M] enables us to show that there is some “symmetry” between the fibers
over 0 and oo for an extension p : X — CP! of p. The proof of this fact is
long and computational, and, therefore, we place it in the Appendlx Using
this symmetry, we find the dual graph of the curve D = X — C? where
p : X — CP! is another extension of p such that D is of simple normal
crossing type (which will be abbreviated by SNC-type in what follows). The
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form of this graph implies that the second degenerate fiber of p contains
a C*-component which does not meet some line. After this step the Main
Theorem can be obtained from the following result which is interesting by
itself.

Proposition. Let Ty and C be closed disjoint affine algebraic curves in C2.
Suppose that Ty 1is isomorphic to C* and C is isomorphic to C. Then there
exists a coordinate system (z,y) in C? for which C is the y-azis and the
curve Ly is given by one of the following equations

(i) z"+oF(z,y) =0;

(i) z"o*(z,y)+1=0;
where n, k are relatively prime natural numbers, o(z,y) = ™y + g(z) with
g € Clz], deg g < m, and g(0) # 0 for m > 0.

Note that the polynomials given by (i) correspond to non-rational poly-
nomials. It is worth mentioning that there exist non-rational polynomials
with a C*-fiber which are not equivalent to polynomials of this type. Exam-
ples of such polynomials were constructed recently by P. Russell and by P.
Cassou-Nogues.

2. Preliminaries.

In this section we introduce notation, terminology, recall some known the-
orems, and prove several simple facts. The ground field is always C in this
paper.

2.1. Let p: X — B be a morphism from a smooth algebraic surface X into
a smooth algebraic curve B. (For instance, X = C? , B=C, and p is a
polynomial.) Put T’y = p~*(b) for every b € B.

Definition. We shall say that a fiber I'; is generic if for a certain neighbor-
hood U of b in B the following commutative diagram holds

p_l(U) 4 'yxU

P\ ' P
U

where @ is a C*°-diffeomorphism and p is the natural projection. If a fiber
is not generic we shall call it degenerate.

2.2. Definition. A polynomial p is primitive if its generic fibers are con-
nected, otherwise it is nonprimitive (for example, p(z,y) = z? is nonprimi-
tive).

The study of nonprimitive polynomials can be reduced to the primitive
case due to the following fact which is actually the Stein factorization.
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Theorem ([F], [LZ]). For every non-primitive polynomial q(x,y) there exist
a primitive polynomial p(z,y) and a polynomial in one variable h(z) so that
q(z,y) = h(p(z,y))-

Therefore, from now on we shall restrict ourselves to primitive polynomials
only.

2.3. Let p be a primitive polynomial, let I" be the generic fiber of p, and let
Xx(Tp) be the Euler characteristics of I',. Suppose that the set S C C is such
that Ty is degenerate iff b € S. We shall call S the degeneration set of p. It
is well-known that S is finite [T]. -

Theorem ([Sul], [Su2], see also [Z2]). For every primitive polynomial p
in two variables the following formula holds

> (x(Ty) = x(T)) =1 = x(I)

bes
where S is the degeneration set of p. Moreover, x(I's) > x(T'), and this
inequality becomes the equality if and only if T'y is generic.

Remark. When p is not primitive the first statement of the theorem is still
true, but the second statement holds only when generic fibers do not contain
components isomorphic to C or C*. (We do not use this remark further.)

Corollary. Let the zero fiber T'y of a primitive polynomial p be isomorphic
to C*. Then either 'y is generic or there is only one degenerate fiber other
than Ty.

Proof. Suppose that I’y is degenerate. Since x(I'g) = 0, we have, by Theorem
2.3,
> (x(Ts) — x(T) — x(IT) =1 — x(I).

beS—0
Hence
Y (x(Ts) = x(T) = L.
bES—0
Since every term in the above sum is a positive integer, by Theorem 2.3,
there is only one term. O

Notation. Multiplying the polynomial by a constant, if necessary, we shall
always suppose that under the assumption of Corollary the second degener-
ate fiber is I'; = p~1(1). ‘

2.4. Let p: X — B be as in 2.1. Standard results of the theory of resolution
of singularities yield the existence of smooth compactifications X of X and B
of B so that the mapping p : X — B can be extended to a regular mapping
p: X — B. (When B = C then B coincides, of course, with CP*.)
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Definition. We shall call the mapping p an extension of p. An irreducible
component E of the curve D = X — X is called horizontal if the restriction
of p to E is not a constant mapping (which implies automatically that this
restriction is surjective). Otherwise, it is called vertical.

A degenerate fiber of a polynomial p can be reducible even when p is
primitive, in other words this fiber can consist of more than one irreducible
algebraic curve (component). We shall need information about the number
of irreducible components of the degenerate fibers of a polynomial p, and we
can define this number in terms of extensions of the polynomial p. Since p-
is primitive, the generic fiber of p is connected, i.e. it is a smooth compact
Riemann surface. Recall that the polynomial p is rational if the generic fiber
of p is isomorphic to the Riemann sphere. The following theorem was proved
in [Sa1l] for rational polynomials and in [K2] for the general case.
Theorem. Let p : X — CP' be an extension of a primitive polynomial
p, and let S be the degeneration set of p. Suppose that 7y, is the number of
irreducible components in the fiber T'y of p, and n is the number of horizontal
components in the curve D = X — C%. Then

Y m-1)<n-1

bes

Moreover, if p is rational, thenn —1 =3 ,.q(m — 1).

2.5. Let p : X — B be an extension of a morphism p : X — B from a
smooth algebraic surface X into a smooth curve B.

Definition. This extension is called pseudominimal if there are no (-1)-
curves among the vertical components of D = X — X. (Recall that a (-
1)-curve in a compact smooth algebraic surface is a rational curve whose
selfintersection number is -1. The surface remains smooth after contracting
this curve to a point.)

Proposition [{Z2, Lemma 3.5]. Let p be a pseudominimal eztension of p.
Suppose that the generic fiber of p is connected and that g is its genus. Let T,
be the closure of the fiber T, = p~'(0) in X where o € B.Then the arithmetic
genus of T, is < g and the equality holds if and only if the divisors T, and
p*(0) coincide, i.e the fiber p~'(0) contains no vertical components of D.

Since the arithmetical genus of a smooth non-multiple rational curve is
zero we have

Corollary. Suppose that p is pseudominimal. Let g =0 and T, be a smooth
rational curve. Suppose that ', is not a multiple fiber of the mapping p.
Then the fiber p~*(0) contains no vertical components of D.
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2.6. Let p be a rational polynomial and let $ : X — CP?! be an extension
(may be non-pseudominimal) Let C be a non-multiple component of T,
where 0 € C and let C be its closure in p l(o) By Corollary 2.5, one
may reduce the fiber p~1(0) to this component C by blowing X down. The
following fact shows that every fiber of  can be reduced to one component
without any extra assumption since X is a rational ruled surface.
Theorem ([GH, Chap. 4, Sec. 3]). There ezists a commutative diagram

X 5 q
P\ v q
CcP!

where @) is a Hirzebruch surface, q is the natural projection, and ¢ is a
composition of blowing-ups.

2.7. If p: X — B is a pseudominimal extension of p :X — B then X is not
necessarily an NC-completion of X, i.e. the divisor D = X — X may be not
of normal crossing type.

Definition. An extension p : X — B of a morphism p : X — B is
called quasiminimal if X is an NC-completion of X and it is minimal, i.e.
the completion stops being an NC-completion after contracting any vertical
(=1)-curve in the divisor D = X — X.

It is clear that for every pseudominimal extension p : X — B of p :
X — B there exists a composition of blowing-ups o : X — X such that the
extension p = poo is qu351-m1n1mal and the restriction of ¢ is an isomorphism
between X — D, and X — D, where D, and D, are the unions of the vertical
components of the divisors D and D respectively. Vice versa, for every quasi-
minimal extension p one can find a pseudominimal extension p such that the
above properties hold. By construction, the curve Dis simply connected if
the curve D is simply connected. When D is simply connected (and this is
the case we shall deal with) it has no non-smooth components (i.e. there is
no component which has ordinary double points). In this case X is called
an SNC-completion of X and the divisor D is of SNC-type (simple normal
crossing type).

2.8. Definition. We shall say that a fiber I', of p is generic relative to
the extension p, if the fiber p~(b) is not a degenerate fiber of p and the
horizontal components of the curve D meet the fiber p~(b) normally.

Since we permanently work with polynomial extensions we shall need to
know the connection between the generic fibers of the polynomial p and its
generic fibers relative to the extension p. It is not difficult to check the
following fact (e.g., see [Z2, Proposition 3.6]).
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Proposition. Let p be a pseudominimal extension of a polynomial p. Then
Ty, (where b # 00) is a generic fiber of p iff p~1(b) is generic relative to p.

Corollary. Let p be a quasi-minimal extension of a polynomial p. Then T,
(where b # 00) is a generic fiber of p iff p~(b) is generic relative to p.

2.9. Let D be a complete algebraic curve of SNC-type in a compact al-
gebraic surface X. The dual graph G(D) of D is a weighted graph whose
vertices are the irreducible components of D, edges between vertices are the
ordinary double points that belong to the corresponding components, and
the weights over vertices are the selfintersection numbers of the correspond-
ing components. The valency of a vertex in the graph is the number of the
incident edges. A vertex is called an endpoint, a linear point, or a branch
point of the graph if its valency is 1,2, or > 2 respectively. Two vertices in
the graph are neighbors if they are joined by an edge (i.e. the corresponding
components in D have a common point). The dual graph is linear if it has
no branch points.

Let E be a vertex of G(D). By G(D) — E we denote the graph obtained
from G(D) by removing E and deleting the edges at E. Each connected
component of the graph G(D) — E is called a branch at E.

It is well known that for every SNC-completion X of C? the graph of
the curve D is a tree of rational curves. In particular, D is connected and
simply connected. (In fact the curve D = X — C? is connected and simply
connected for every completion X of C2.) Note that if D contains a (-1)-
component which corresponds to a linear point or an endpoint E of G(D)
then by contracting this component we obtain a new curve D which is still
of SNC-type and whose graph is a tree. When F is an endpoint then the
graph G(D) coincides with G(D) — E , except for the weight of the former
neighbor of E which is increased by 1. If E is a linear point then G(D)
can be obtained from G(D) — E by joining the former neighbors of E with
an edge and increasing their weights by 1. The graph G(D) may contain
a linear or end point of weight -1, and one can contract the corresponding
component again.

Definition. By an RM-procedure, we understand a sequence of successive
contractions of (-1)-components which correspond to linear points and end-
points in the graph G(D) and in subsequent images of G(D) during these
contractions. This procedure keeps going until we obtain a graph which has
no linear points and endpoints of weight -1.

The remarkable Ramanujam-Morrow theorem shows that the final graph
is linear and gives its complete description. Here is the part of this theorem
which will be used later in this paper.
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Theorem (Ramanujam-Morrow [R], [M]). Let X be a smooth algebraic
compact surface and let D be a divisor of SNC-type in X. Suppose X — D
is isomorphic to C%. Then every RM-procedure reduce D to a curve whose
dual graph has one of the following representations in Fig. 1

1
(1) o
0 n
(2) o——o (n#-1)
lm lm—l ll n 0 ——n—ltl tk—l tk
(3) o O v o G o O— 0-¢+* —mm - O—ou—20 _

Figure 1. Ramanujam-Morrow graphs.

where I; < =2, t; < =2, n > 0, and k and m are nonnegative integers.
Moreover, I, and t; cannot be simultaneously —2.

2.10. Lemma. Let p be a primitive polynomial and let p : X — CP' be
an extension. For each b € C and every connected component A of the set
p~'(b) —p~'(b) there exists ezactly one horizontal irreducible component H
of the curve D = X — C? for which AN H # (. Moreover, the set HN A
consists of one point, and each horizontal component of D meets the fiber
P~ 1(c0) at one point as well.

Proof. Since p is primitive, the generic fiber of p, and, therefore, the generic
fiber of p are connected. Since X is compact this implies that every fiber of
P is connected. After a sequence of blowing-ups one may suppose that D is
of SNC-type. (These blowing-ups do not change the number of connected
components in p~ 1(b) —p~'(b) and the number of horizontal irreducible com-
ponent in D.) Each horlzonta.l component meets p~(co) C D. Since p—*(c0)
is connected, the statement of this lemma follows from the fact that D is
connected simply connected. a

2.11. Definition. Let D be as in the previous lemma. A horizontal
component E of D is called a section if the restriction of p to E is a one-to-
one mapping.

Suppose that p is a primitive polynomial whose zero fiber I'y is isomorphic
to C*. Recall that if Ty is degenerate, then p has one more degenerate fiber
I';, by Corollary 2.3.

Lemma. Let p,I'y be as above. Suppose that 'y is degenerate and T'; is
the second degenerate fiber. Let p: X — CP' be an extension of p. Then
both the number of horizontal components of D and the number of irreducible
components in I'y do not exceed 2. In the case of a rational polynomial p
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both these numbers are 2, and at least one of the horizontal components is
not a section.

Proof. Let Ty be the closure of Ty in X. After some blowing-ups (if nec-
essary) one may suppose that the curve I'y is smooth in X. Since I'y has
two punctures, the set [y — I'y consists of two points. The fiber 571(0) is
connected and, hence, the number of connected components in p7*(0) — I’y
is < 2. By Lemma 2.10, there are at most two horizontal components in
D. By Theorem 2.4, the number of irreducible components in the second
degenerate fiber does not exceed two. If p is rational and D has only one
horizontal component then I'; is irreducible. Therefore, p must be equivalent
to a linear polynomial ([Sal, Theorem A]), i.e. p cannot have a C*-fiber.
This shows that in the case of rational p there are two horizontal components
in D. By Theorem 2.4, there are two irreducible components in the second
degenerate fiber. If both horizontal components are sections then the generic
fiber of p is C* and I'y must be generic, by Theorem 2.3. This contradicts
the assumption that the zero fiber is not generic. U

It is worth mentioning that there was a wrong claim in [K] that at most
one horizontal component in an extension of any rational polynomial may
be different from a section. An example of a rational polynomial whose
extension has more than one horizontal component different from a section
was constructed in [AC].

2.12. Lemma. Let the assumption be as in 2.11. Suppose that H, and H,
are horizontal components of D. Then for each k = 1,2 and each b # 0,00
the component Hy, meets the fiber p~(b) normally, the set H, Np~*(b) con-
tains only smooth points of p~*(b) which belong to non-multiple components
of p*(b). (In other words the local intersection index of Hy and p—*(b) is
1.) Moreover, if the horizontal component is a section, the same is true for
b=0,o00.

Proof. Let H be one of the horizontal components. Let the mapping p|z :
H — CP' be m-sheeted. The set p~'(0) — I, consists of two connected
components. Since D has two horizontal components and each of them
intersects p~1(0), the set 5~*(0) N H consists of one point, by Lemma 2.10.
The same is true for the set 5~'(co) N H. If m > 1 these points are branch
points of index m for the projection p|y : H — CP!. By the Riemann-
Hurwitz formula, there is no other branch point. In the case of m =1 there
is no branch point at all. It remains to note that if the local intersection
index of H and p~(b) at a point z € H N p~1(b) is > 2 then z must be a
branch point of the mapping p|z. O
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Remark. The fact that for b # 0,1, 00 the fiber 5~!(b) meets H normally
can be easily obtained from Proposition 2.8. The only new information,
which we get from Lemma 2.12, is that p~(1) meets H normally as well.

2.13. The next proposition enables us to describe polynomials with a C*-
fiber in many cases.

Proposition. Let I'y and C be disjoint closed affine algebraic curves in C2.
Suppose that T'y is isomorphic to C* and C is isomorphic to C. Then there
ezists a coordinate system (z,y) in C? for which C is the y-azis and the
curve Ty is given by one of the following equations

(i) z"+0*(z,y) =0;

(i) z"o*(z,y)+1=0;
where n,k are relatively prime natural numbers, o(z,y) = z™y + g(z) with
g € C[z], deg g < m, and g(0) # 0 for m > 0.

Proof. According to the Abhyankar-Moh-Suzuki Theorem [AM], [Sul] one
may suppose that C coincides with the axis £ = 0. Let I’y be the zero fiber
of a primitive polynomial p(z,y) = Xa;;z'y’. Note that there exists jo > 0
such that a;;, # 0 for some ¢ since otherwise Iy is a line. Choose natural
s > 0 so that sj > i for every pair (i, j) such that j > 0 and a;; # 0. Then
one can represent p(z,z~°y) as z¢h(z,y), where e is an integer, z does not
divide the polynomial h(z,y), and h(0,0) = 0.

It is clear that the curve Iy = {(z,y)|h(z,y) = 0} is homeomorphic to
C. (It is so since the birational mapping (z,y) — (z,z7°y) establishes
an isomorphism between I'y and Ty — (0,0). More precisely: T, is the
proper transform of 'y under this mapping.) By the Lin-Zaidenberg The-
orem [LZ], one may suppose that the curve 'y U C is given by the zero
fiber of a quasi-homogeneous polynomial u”(u' + v*) in a certain coordinate
system (u,v) (u = fi(z,y),v = fo(z,y), where fi and f, are polynomials
giving an automorphism). In this system C = {u = 0}. Thus we may
suppose f,(r,y) = = and, therefore, fo(z,y) = y + ¢(z). In particular,
h(z,y) = =' + (y + ¢(z))*. Passing to p(z,y), we obtain the desired conclu-
sion. O

Remark. In the above proposition one may assume that C' is only home-
omorphic to C. In order to show that C is actually smooth one may use.
the following argument. If C is not smooth then it follows from the Lin-
Zaidenberg Theorem that C? —C admits a natural C*-action. It is not
difficult to check that I' must be an orbit of this action. But these orbits are
not closed which is a contradiction. We do not need this stronger version
of Proposition later. It is also worth mentioning that this Proposition is a
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generalization of Saito’s Theorem on C*-polynomials [Sa2] and Zaidenberg’s
Theorem on C*-actions [Z4].

Corollary. Let I'y and C be as in the above proposition. Suppose that Ty
is the zero fiber of a primitive polynomial. Then either I'y is generic or p is
non-rational.

Proof. Suppose that p is equivalent to one of the polynomials (ii) from
Proposition 2.13. Then p~'(c) is given by y = z7™[(c — 1)z~* — g(=z)]
which implies that Iy is generic. If p is equivalent to one of the polynomials:
(i) then the generic fiber of p is isomorphic to the curve z"+y* = 1 with extra
punctures. (In order to see this it suffices to note that (z,y) — (z,0(z,y)) is
a birational morphism.) When neither n nor % is 1 then the curve z"+y* =1
has a positive genus, i.e. p is non-rational. Consider n = 1. Then p~!(c) is
given by y = z7™[(c — z)*/* — g(z)] which implies that T'y is generic. The
case when k = 1 is similar. 0

2.14. Notation and Terminology. We conclude this section with citing
notation we shall use in the remainder of this article. We always denote by
p a primitive rational polynomial with fibers I', = p~!(b) for b € C. The
zero fiber Ty is degenerate and is isomorphic to C*. By p: X — CP! and
P : X — CP! we denote extensions of p. The complement of C? in X
(respectively X) is denoted by D (respectively D). Recall that these curves
are always simply connected. The extension p is always quasi-minimal and,
therefore, the curve D is of SNC-type. For every SNC-curve D its dual
graph is denoted by G(D). By Lemma 2.11, we know that D (resp. D)
has only two horizontal components H; and H, (resp. Hi,H,). At least
one of them is not a section, by Lemma 2.11. We always suppose that H,
(resp. H,) is not a section. Due to Corollary 2.3 we know that there is one
more degenerate fiber of p, which is always I'; = p~*(1). It contains two
irreducible components Cl and C,, by Lemma 2.11. The closures of these
components in X are CI,CZ respectively. Later we shall see that either C)
or C, is a non-multiple component of p~!(1). After proving this we shall
always suppose that C, is not multiple.

Since we shall work a lot with graphs we have to introduce some termi-
nology. Let G, G, be subgraphs of the graph G = G (D) The subgraph G,
is contractible if the curve that consists of components corresponding to its
vertices is contractible. (Recall that an algebraic curve C in a smooth closed
algebraic surface Y is called contractible if there exist another smooth closed
algebraic surface Z, a point z € Z, and a morphism ¢ : Y — Z which is
a composition of blowing-ups of Z at z and infinitely near points to z such
that ¢~!(z) = C.) By G, UG, we denote the subgraph of G that contains
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all vertices of G; and G, and all edges between these vertices that belong to
G. The graph G — G, is obtained form G by removing all vertices of G; from
G and deleting all edges incident to these vertices. Let E be a component
in D. We denote the corresponding vertex of G = G(D) by the same letter
E. We say that E is a (—1)-vertex if its weight is -1, i.e. E is a (—1)-curve.
Let D be the curve obtained from D after several contractions in an RM-
procedure. Suppose that a component F' is not contracted after these steps.
Then, by abusing notation, we denote the image of the vertex F' in D and
inG (I_~)) by the same letter F' unless it may cause misunderstanding. Some
subgraphs are denoted by rectangles in the figures of graphs. A rectangle
may correspond to an empty subgraph unless the opposite is stated.

We shall consider later linear graphs with n vertices, each of which has
weight —2. We call such a graph standard and denote it by S(n).

3. The first description of G(D).

The central result of this section is Proposition 3.6 which gives some essential
features of graph G(D) (see Fig. 2). In particular, this first description of
G(D) implies that the fiber p~1(0) is irreducible (Proposition 3.7) which is
a key for obtaining the graph of the fiber p~*(oco0) in Section 4.

3.1. By Theorem 2.6, for every b € CP! the fiber p~*(b) can be contracted
to a smooth rational irreducible curve (since the fibers of morphism ¢ from
Theorem 2.6 are irreducible). In other words there exists a morphism d :
XX which is a composmon of blowing-ups of a smooth closed algebraic
surface X so that 6=1(E) = p~1(b) where E is a smooth irreducible rational
curve in X and the restnctlon of § to X —p~1(b) is an isomorphism between
X —p~1(b) and X — E. By the universal property of blowing-ups, there exists
a morphism p : X — CP? such that p = pod and E = p~'(b). Suppose
we have compositions of blowing-ups 6; : X 5> Xanddy, : X » X for
which § = §, 0 ;. Put = pod, : X — CP!. Since the preimage of every
SNC-curve under blowing up remains an SNC-curve we may speak about
the graphs of p~1(b) and p~1(b).
Lemma. Let G be the graph of a fiber p~1(b). Suppose that this fiber contains
at least two irreducible components. Then

(1) all weights of G are negative and G contains a (—1)-vertez;

(2) if E is a (—1)-vertez in G then E is a linear point or an endpoint;

(3) two (—1)-vertices in G cannot be neighbors when p—'(b) consists of
more than two components;

(4) if E is a linear point of weight —1 then it is a multiple component
of the divisor p*(b), and, therefore, all components of the curve 67" (E) are
multiple in the divisor p*(b).
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Proof. In order to obtain the fiber 5~1(b) from E one has to blow X up at
a point from F and, perhaps, to repeat blowing up the resulting surfaces at
points from the fibers over b several times (we need at least one blowing-up
since p~'(b) is not irreducible). After each blowing-up we obtain a fiber
over b whose dual graph is a tree of rational curves and which contain a
(=1)-curve as a result of the last blowing-up. Since E is a fiber of p its
self-intersection number E - E = 0. Hence the weights of the dual graph
of the fiber over b in the first blowing-up of X are already negative which _
implies (1). Assume now that a (—1)-vertex E is a branch point of G. In
order to reduce the fiber over b to an irreducible curve one has to contract a
branch of G at E. After this the weight of £ becomes non-negative, i.e. this
component cannot be shrunk further. Thus one need to contract all other
branches at E. This makes the weight of E positive in contradiction with
the fact that the selfintersection of the fiber must be 0. Thus (2) holds. The
same reason implies (3).

If E is a linear point of G it appears in the blowing-up procedure after
blowing up an ordinary double point of the fiber over b. Hence the multi-
plicity of E in p*(b) is at least 2. O

3.2. Proposition. Let E be a branch point of G = G(D) of weight —1.
Then

(i) the irreducible component E of the curve D cannot be contracted in
any Ramanujam-Morrow procedure, and after this procedure the weight of E
becomes non-negative;

(ii) at most two branches of G at E are non-contractible.

Proof. One cannot contract E at once in an RM-procedure since it is a
branch point. Thus in order to contract E one must contract a branch at E
first. We have to contract a neighbor of E at some step while contracting this
branch. But the weight of E becomes non-negative after this step. Hence
E cannot be contracted. This implies that if more than two branches are
non-contractible at F then the graph G cannot be reduced to a linear graph
via an RM-procedure which is a contradiction. a

Corollary. (i) Let E and F be branch points of G. Suppose that E is a
(—1)-vertez. Consider all branches at F that do not contain E. Then all of -
them except possibly for one are contractible.

(ii) Let E be a branch point of G of weight —1 and valency > 4 (we do
not assume the existence of another branch point now), and let G*,G? be
branches of at E. Then G* U G? contains either a non-branch (—1)-vertez
or a vertez of zero weight.

Proof. Note that the branch at F' that contains E is non-contractible, by
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Proposition 3.2 (i). If there exist two other non-contractible branches at F,
then F' remains a branch point after any RM-procedure. Contradiction.
Assume that G' and G? do not contain (—1)-vertices which are not branch
points of G. Hence none of the vertices in these subgraphs can be contracted.
Moreover, since F is non-contractible these vertices have no contractible
neighbors in an RM-procedure, i.e. all of these vertices preserve their weights
during this procedure. By Proposition 3.2 (ii), all other branches are con-
tractible and after contracting them we obtain a positive weight of E, since
the number of these contractible branches is > 2. Hence one of the neighbors
of E from G* or G? must have a zero weight, by Theorem 2.9. O

3.3. Lemma. There is no linear point or endpoint of weight —1 in G(ﬁ)
ezcept for, possibly, Hy, and H,.

Proof. Let E be a linear point or an endpoint in G(D) of weight -1. If it is
different from H, and H, it corresponds to a vertical component of D. After
contracting E we obtain a new extension p : X — CP" such that the curve
D = X — C? is of SNC-type. This contradicts quasi-minimality of p. O

3.4. By quasi-minimality of the extension p, horizontal components H, and
H, meets the fiber = (0o) normally. Denote by G, the subgraph of G(D)
that corresponds to the fiber p~*(00).

Lemma. The curves H, and H, meet p~'(co) at different components de-
noted by E, and E, respectively. All weights of the graph G, — (E, U E,)
are < —2. The weights of E, and E, are also negative and at least one of
them is —1.

Proof. By Theorem 2.6, the fiber p~!(co) can be contracted to an irreducible
curve in the way we did in the proof of Lemma 3.1. After this contraction
we obtain a new extension § : X — CP' with the following properties: the
fiber E = p~1(o0) is irreducible and non-multiple (since the same is true for
the fibers of the morphism ¢ from Theorem 2.6), and X — E is isomorphic
to X — p~'(c0). Then the curve D is simply connected and its horizontal
components H;, H, meet E at points a;,a, respectively, by Lemma 2.10.
(May be a; = a,.) Since H, is not a section its intersection index with E
is not 1. Since E is not a multiple fiber of § the curve H, cannot meet E
normally. This means that in order to obtain the quasi-minimal extension
p : X — CP! we have to blow X up at a,. In particular, $~(co) is not
irreducible. By Lemma 3.1, all the weight of G, are negative and it contains

a (—1)-vertex E. This vertex must be either a linear point or an endpoint of
Go. Note that E must be a branch point of G (D), by Lemma 3.3, i.e. E is
a nelghbor of at least one of the vertices H;, H,, by Lemma 3.1 (2). Assume
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that H; and H, are neighbors of E simultaneously. In particular, there is
no other (—1)-vertex in G,. Assume that E is a linear point of Go,. Then
the valency of E in G(D) is 4. Consider the two branches at E whose union
is G — E. By Corollary 3.2 (ii), one of them has a vertex of zero weight
which is a contradiction. Assume FE is an endpoint of G,. Since the other
vertices of G, have weights < —2 it cannot be a linear graph, otherwise
induction by the number of vertices shows that the fiber p~!(00) cannot be
contracted to the irreducible component E with selfintersection 0. Thus G,
has a branch point F. The branches of G, at F that do not contain E are
not contractible. This contradicts Corollary 3.2 (i). Thus H, and H, meets
p~1(00) at different components F; and E,. As we mentioned before each
(—1)-vetex from G, must be a neighbor of either H; or H, in G(D). Hence
Lemma 3.1 (1) concludes the proof. (|

3.5 Lemma. Under the assumption of Lemma 3.4 one of the weights of E,
and E, must be < —2. When H, is a section the weight of E, is < —2 and,
therefore, the weight of E, 1s —1.

Proof. By Lemma 3.4, these weights are negative. Assume that both E;
and E, are (—1)-vertices. By Lemma 3.1 (3), there are no more vertices
in G and, by Lemma 3.3, E; and E, are branch points of G(D). By
Proposition 3.2 (i), the weights of E; and FE, become non-negative after
an RM-procedure. By Theorem 2.9, E; and E, must become neighbors
after this procedure. Note that the weights of the vertices in the connected
component of G(D) — (E; U E,) that is between E; and E, are < —2, by
Lemma 3.4, i.e. none of these vertices can be contracted in an RM-procedure.
Thus there is no vertices between E; and E, in G(D), i.e. they are neighbors
in G(D) and in Go. This contradicts Lemma 3.1 (3). Therefore, one of the
weights is < —2.

Suppose that H, is a section and assume that the weight of E; is -1. By
Lemma 3.3, E; cannot be an end point of G.,. (Otherwise it is a linear
point of G (ﬁ)) Hence E; is a linear point in G, and, therefore, a multiple
component of the divisor p*(c0), by Lemma 3.1 (4). In particular, the inter-
section number of F; and ﬁl is > 2 which contradicts Lemma 2.12. Thus
the weight of F; must be < —2 when H, is a section. O

Convention. From now on we always suppose now that the weight of E,
is -1.

3.6. Proposition. The graph G(D) looks like the graph in Fig. 2. More
precisely:
(i) The subgraph G, coincide with G}, U E; UG% U E, U G2,.
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(ii) The subgraph G2, is non-empty.

(i) The subgraphs E, U G2, H, UGY, H, U G2, and G, are linear.

(iv) One of the branches at E, which is different from G?, must be con-
tractible.

(v) The weight of H, is > —1 and H; is a (—1)-vertes.

Proof. The first two statements follow from Lemmas 3.3, 3.4, and 3.5, and
from Convention 3.5. Assume that the graph E, U G% contains a branch
point F' which should be different from E,, by Lemma 3.1 (2). The branches
at F which do not contain E, are non-contractible, by Lemma 3.4. But this
contradicts Corollary 3.2 (i) (in order to see this put E = E,). Thus the
subgraph E, U G?, is linear. Exactly the same argument implies the rest of
the statement (iii).

Since G%, does not contain (—1)-vertices it is non-contractible. By Propo-
sition 3.2, one of the branches at E, which is different from G2 must be
contractible, i.e (iv) is proven.

G, Gi
N
. N
E H,
GO
J 21
-1 E, JOH?
G2, G?

Figure 2. The first description of G(D).

First consider the case when the branch H, UG? is contractible. It follows
from Lemma 3.3 that we cannot contract vertices from G? at the first step
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of an RM-procedure. Hence H, should be a (—1)-vertex in this case. After
contracting H, UG? the weight of E, becomes non-negative (see Proposition
3.2). By Theorem 2.9, the neighbor of E, after an RM-procedure must have
a non-negative weight as well. Hence, since the weights of G, — E, are
< —2, by Lemmas 3.4 and 3.5, we have to contract some vertices in H; UG].
Lemma 3.3 implies that H; should be contracted first, i.e. it is a (—1)-vertex
in this case.

In the second case we can contract the branch at E, that contains ﬁl.
Same argument as above shows that H; must be a (—1)-vertex and the
weight of H, is > —1. O

Corollary. The subgraphs G} and G? from Fig. 2 do not contain linear
points and endpoints of weight —1.

Proof. Assume the contrary and let F' be such (—1)-vertex in, say, G}. Since
H, UG} is linear one can see that F must be a linear point or an end point
of G(D) which contradicts Lemma 3.3. [l

3.7. Lemma. The vertices of the subgraphs G5 and G3 from Fig. 2 corre-
spond to components of the fiber p~1(1).

Proof. By Corollary 2.8, the vertices from Gi U G? correspond to compo-
nents from either p~*(1) or p~1(0) since all other fibers are generic. Assume
that one of subgraphs, say Gi, corresponds to components from p~*(0). By
Corollary 2.5, p~1(0) can be contracted to the component that is the clo-
sure of I'y in X. Hence the subgraph G7 is contractible, i.e. it contains a
(=1)-vertex F. This contradicts Lemma 3.3. By an analogous argument,
the vertices of G7 cannot correspond to components from $~*(0). OJ

This implies the following fact.

Proposition. The fiber p~*(0) consists of one irreducible component. More-
over, suppose that my is the intersection number of H, and the fiber of p
where k = 1,2. Then H, and H, meet p~2(0) at different points a; and a,
respectively, and the contact order between Hy and p~1(0) at ay, is my.

4. The fiber over oo.

4.1. The aim of this section is to describe the graph G, of the fiber p~!(00).
First we introduce some notation which will be used in the rest of this paper.
Let Q,q,6 be the same as in Theorem 2.6. We consider the following
subvarieties of Q: Q' = ¢ !(C), Q* = ¢7!(C*), and Q* = ¢ 1(C — {0,1}).
We put also Hy = §(H}) (k = 1,2). Since the fibers 5~ (b) are irreducible
for b € C —{0,1}, by Corollary 2.8, the restriction of § to p~*(C — {0,1}) is
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an isomorphism between $~!(C — {0,1}) and Q. Moreover, since the fiber
p~1(0) is irreducible, by Proposition 3.7, the restriction of § to p~*(C — {1})
is also isomorphism between p~!(C — {1}) and Q' — ¢~ *(1). Hence H; and
H, meets ¢~'(0) at different points ¢; and ¢, respectively, Hy is smooth at
¢k, and the contact order between H; and ¢~'(0) and H, is m; where m; is
the same as in Proposition 3.7.

Introduce a coordinate system (z, (y; : %)) in @' = C x CP? so that
q(z, (y1 : ¥2)) = = and the coordinates of ¢; and ¢, in ¢g~*(0) are (0 : 1) and
(1 : 0) respectively. Consider the antiholomorphic mapping 'y : Q' — Q!
given by )

"o(x, (Y1 : ¥2)) = (7, (§1 : 2))

(where @ means the complex conjugate of number a) and consider the iso-
morphism "y : Q? = Q? given by

"o(z, (v1 : 1)) = (1/z, (1 : 92))-

Let 'H}, be the closure of ‘o(H}) in Q and " H}, be the closure of "¢(Hy) in
Q.

Convention. For every curve F in Q (or in Q' with [ < k) we denote by
F* the curve F N Q*. Similarly, if ¢ is a morphism from Q (or Q') then 1
is the restriction of 1 to Q*. For instance, 'H 2 ="H;NQ? and g3 = q |gs.

Lemma. There ezists an isomorphism &: Q3 — Q® such that ¢('H3) = "H.
and g3 = g3 0¢&.

4.2. The proof of Lemma 4.1 is very computational and, therefore, we
prefer to hide it in the Appendix. In this section we extract a consequence
from it. In order to do this we need an intermediate step.

Let X;, X,, X1, X> be smooth algebraic surfaces such that X, C Xy, and
let py : X, — CP! be nonconstant morphisms such that every non-empty
fiber p; ' (c) is compact. Put py = Pi|x, and suppose that x : X; = X, is an
isomorphism so that a o p; = p, o kK where a is an automorphism of CP*.
Suppose also that p,(X,) does not contain «(b) for some point b € CP?.
Let F’lk, F‘,k be irreducible curves in X » such that p; is not constant on
any of them Put Fy = F;;, N X, and suppose that k(Fj) = Fj;. Denote by
Pr : Xip = CP! an extension of p; and by ij the closure of Fj in Xi. -

Lemma.  Suppose that Fy,...,F, meet p7*(b) at different points
Qaiy,--- ,au, that Fjl s smooth at aj;, and that the contact order between Fﬂ
and p7(b) is n;. Then one may choose an extension p, so that Fi,,... ,Ep,
meet the fiber b, ' (a(b)) at different points ays, ... , a5, that Fjy is smooth at
ajz , and that the contact order of Fj; and p3"(a(b)) is n;.
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Proof. Let § = o }(CP! — f5(X)). Put X| = 7'(S) UX,. Glue X!
a.~nd X, along X; =~ X, via k and we obtain the desired compactification of
X. O

4.3. Now we are ready to extract a consequence from Lemma 4.1.
Proposition. Let p be the restriction of p to X —p~"(c0)(= 671(Q")). Then
there exists an extension p: X — CP?! of p such that

(i) the fiber p~(00) is irreducible;

(i) H, and H, meet p~'(00) at different points a, and a, respectively;
(ili) for each k = 1,2 the curve Hy is smooth at a; and the contact order

between Hy and p~*(0o) is m; where my, is the same as in Proposition
3.7.

Proof. Recall that the contact order of H; and ¢~*(0) at ¢; is m; and H,
is smooth at ¢;. Hence H; is given by z = y™ f(y) in the local coordinate
system (z,y) with origin at ¢; where y = y;/y, and f is a holomorphic
function such that f(0) # 0. The definitions of 'H; and ‘¢ imply that the
local equation for 'H; is £ = y™ f(7) (where “bar” means the complex
conjugate). Hence 'H; is smooth at ¢; and has the contact order m; with
q~'(0). Similar fact holds, of course, for 'H,. Application of Lemma 4.2
to the isomorphism ¢ implies the existence of an extension of g3 such that
the closures of "H? and "H?> meet the fiber over 0 at different points with
multiplicities m; and m, respectively and, moreover, these points are smooth
points of the closures of "H f and "H 3 in Q! respectively. Application of
Lemma 4.2 to the isomorphism "¢ implies the existence of an extension
of g3 with similar properties of the curves H? and H? over co. The last
application of Lemma 4.2 to the isomorphism § |s-1(gs) yields the desired
conclusion. O

4.4. Recall that by S(m) (where m > 0) we denote a linear graph with
m vertices each of which has weight —2. Such graphs will be referred as
standard in the sequel.

Lemma. There ezists a quasi-minimal extension p : X — CP?! of p such
that the graph G, of the fiber p~1(0c0) is linear and looks like in Fig. 3a.
One of the horizontal components of D is a section.

Proof. Let p: X — CP?! be as in Lemma 4.3. In particular H; and H,
meet 5~ (00) at different points with multiplicities m; and m, respectively.
Consider two cases: (1) m; and m, > 1 and (2) m; = 1. Note that D —
P~ 1(00) consists of two connected components each of which is an SNC-type
curve (since D — p~1(o0) is isomorphic to D — p~'(co), by construction and
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Lemma 3.6). Hence in case (1) in order to obtain a quasi-minimal extension
from p we have to keep blowing X up at a;,a; and infinitely near points
until the horizontal components meets the fiber over co normally.

S('m1 - 1)
(b)
(a) 1
E,
—m o El C
-1 -1 c
E2 E2
S(m—1) S(my —1)

Figure 3. The graph G

It happens when the graph of the fiber over co looks like in Fig. 3b. Note this
graph contains two (—1)-vertices which contradicts Lemma 3.5. Thus this
case does not hold. In (2) m, must be > 2 since otherwise both horizontal
components are sections which contradicts Lemma 2.11. Replace further m,
by m. In order to obtain a quasi-minimal extension from p we have to blow
X up at a, and m — 1 infinitely near points to a,. This leads to the graph
G looking as in Fig. 3a. O

5. The fiber T'.

From now on we suppose that G, is the graph of p~'(1). Let the notation
be as in Section 2.14. Note that due to Corollary 2.13 neither C; nor C, is
isomorphic to C. Recall that C’k is the closure of C} in X.

5.1. Lemma. Either C; or C, is a non-multiple component of p*(1).

Proof. Let my, be the intersection number Hy-$~1(0). (We know already that
m,; = 1 but it is not essential here.) Note that m, + m, > 3 since otherwise
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the generic fiber of p is C* which contradicts our assumption about p. Thus
H,UH, meets p~1(1) at m,+m, different points which belong to non-multiple
components of (1), by Lemma 2.12. Note that 5~1(1) N D consists of at
most two connected components, by Lemma 3.7. The curve H, U H, meets
each of these components at one point, by Lemma 2.10. Thus H, U H, must
meet either C; or C; which concludes the proof. O

Convention. From now on we suppose that C, is not a multiple component
of p.

5.2. Recall that we denote the closure of C; in X by C’k.

Lemma.

(i) The subgraph G, — C, is contractible,

@ C, is an endpoint,
(1

(iv

C, is a linear point or an end point in this graph with weight —1,

the subgraph G; — (Cy U Cy) coincides with G2 UG? and all its weights
are < —2,

(v) the graph G, is linear.

)
i)
)
)

Proof. Let G' be a connected component of the subgraph G; — C,. Since
C, is not a multiple component of the fiber I';, all components of the curve
corresponding to the subgraph G’ can be shrunk one after another, by Corol-
lary 2.5, which implies (i). Thus G’ contains a (—1)-vertex F. Assume it
is different from C;. Note that G’ C G! U G? U, by Lemma 3.7, i.e. F
belongs to G} U G?. This contradicts Corollary 3.6. Thus the only way to
contract G' is to require that it contains C; which is a linear point or an
endpoint of weight -1. In particular, G; — C. consist of one connected com-
ponent only (if there are two components one of them does not contain G,
and, therefore, cannot be shrunk). Thus C, is an endpoint, i.e. (ii) and (iii)
hold. By Lemma 3.1 (1) and Corollary 3.6, the weights of G; — (C; U Cy)
are < —2, i.e. (iv) holds.

Assume that G, is not linear and F' is a branch point. Let G be the
branch of G, at F that contains C;. Assume that G contains C,. Then
the other branches of G, at F are non-contractible, by (iv), and one cannot
contract p~1(1) to C, in contradiction with Corollary 2.5. Hence G does not
contain C,. While contracting G; — C, one must contract G first due to (iv).
After this we obtain a new graph in which F must be a linear (—1)-vertex
otherwise this graph cannot be contracted further. By Lemma 3.1 (4), all
vertices of G correspond to multiple components of p D *(1). By Lemma 2.12,
H; cannot meet any vertex of G. Assume that G — C, contains a non-empty
connected component which does not contain any neighbor of F. Then this
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component must be either G} or G%. But Fig. 2 implies H, meets G* when
this subgraph is non-empty. Hence this connected component does not exist
and 01 is an endpoint of G and G,. This implies that Dn C, consists of
one point a and C; = C; — a is isomorphic to C in contradiction with the
remark in the beginning of 5.1. Hence (v) is true. O

5.3. Lemma. Suppose that G, does not coincide with C; U C,. Then C,
and Cy are not neighbors in G;.

Proof. Assume that C, and C, are neighbors. Since G is linear and Cs is
an endpoint, by Lemma 5.2, only one vertex of G; — (01 u 02) is a neighbor

of C’l, and let us say that the corresponding irreducible components meet
at a point a. Note that C; = C, — (aU (Cl N (Hl UHQ))). Recall that

C, is not isomorphic to C, by Corollary 2.13. Hence C, N (H, U H,) is not
empty and C; is a non-multiple component of p*(1), by Lemma, 2.12. Hence,
by Lemma 5.2, C, is an endpoint of G; which means that G; = C,u G,
Contradiction. O

5.4. The following fact can be proven easily by induction.

Proposition. If G is a linear contractible graph with no (—1)-vertez, except
for possibly an endpoint, then this endpoint is indeed a (—1)-vertex and the
rest of weights is —2.

Corollary. If the graph G; — (Ql UC») consists of one connected component
then it is standard. Moreover, Cs is a (—1)-vertez in this case.

Proof. The first statement follows immediately from Proposition 5.4, Lem-
mas 5.3 and 5.2 (i), (iv), and (v). The second statement follows from the
fact that the selfintersection of the fiber p~!(1) is 0. O

We shall need the description of G; under some additional assumption
which will be used in the next section.

Lemma. Let the notation be as in Lemma 5.2. Suppose that neither G5 nor
G? is empty. Let m and n be natural, and m > 2, n > 2.

(a) If G? (resp. G?) is a standard graph S(n — 1), then the subgraph Gi
(resp. G?) is the union of a standard graph S(m —1) and the neighbor Vi of
C, whose weight —n — 1.

(b) If G} is a linear graph such that it consists of standard graphs S(m —
2), S(n —2), a vertex F of weight —3 between these two standard graphs,
and if an endpoint of S(n — 2) is a neighbor of Cy, then the neighbor V; of
C, in G? has weight —n and
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(b") either the subgraph G2 —V; is empty,
(b") or it consists of a standard graph and the neighbor V; of Vi whose weight
s —m — 1.

Therefore in all these cases the graph G, — C, coincides with one of the
graphs in Fig. 4.

Proof. Consider (a). Recall that G} U C, U G2 is contractible and C; is the
only (—1)-vertex in this subgraph, by Lemma 5.2. Assumption (a) implies
that we can contract to C'l UG? first. After this contraction we obtain a new -
graph such that all vertices except for V; have the same weight as in G, (since
we have not contracted their neighbors, by construction). In particular, all
weights in this new graph except for the weight of V; are different from —1,
by Lemma 5.2. The weight of V; in this new graph is —1 and the rest of
the weights must be —2, by Proposition 5.4. Note that while contracting
01 U G? we shrink n neighbors of V;. Hence the weight of V; in G, is —n —1
which implies (a).

Consider (b). One may contract S(n —2) U C;. After this we obtain a
new graph in which all vertices except for F' and V; have the same weights
as in G; — C,, i.e they are < —2, by Lemma, 5.2. The weight of F in this
new graph is —2, by construction. Thus the weight of V; in this new graph
is -1. Note that while contracting C,us (n —2) we shrink n — 1 neighbors of
Vi. Hence the weight of V; in G; is —n. Note we may contract G} U C,uw
now. Indeed, since after contracting C; U S(n — 2) the weight of V; becomes
—1 and the weight of F' becomes —2, one can contract the vertices from
ViUF U S(m —2) as well. If G2 # V; then after this contraction the weight
of V; must be —1 and the rest of the weights are —2, by Proposition 5.4.
This implies that the weight of V2 in G; was —m — 1 and that the graph
G? — (V1 UV,) is standard. g

5.5. Suppose Ehat G, — C; looks like one of the graphs in Fig. 4. There are
two ways for C, to be connected with this graph. Namely, C is either the
upper endpoint or the lower endpoint of G;.

Lemma. Let G} and G} be non-empty.

(a) Suppose that G, — C, looks like in Fig. 4a. If C, is the upper endpoint
of G, then V; and all vertices of S(n — 1) are multiple components of the
divisor $*(1). If C, is the lower endpoint of G, then all vertices of S(n — 1)
ezcept for the upper endpoint of G, are multiple components of p*(1).

(b') Suppose that G, — C, looks like in Fig 4b' and C, is the upper endpoint
of Gy. Then Vi is a multiple component of the divisor p*(1).

(b") Suppose that G, — C, looks like in Fig 4b". Then V; is a multiple
component of the divisor p*(1). If Cy is the lower endpoint then all vertices
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below V; are also multiple components of p*(1).

Proof. The proof of the statements (a), (b’), and (b”) is based on the same
idea. We contract some components in G; — C, so that V; becomes a linear
(—1)-vertex in the image of G;. This contraction generates a morphism
o : X - X which in its turn generates P : X — CP! so that p = poo.
By Lemma 3.1 (4), o(V;) is a multiple component of p and, therefore, V] is
a multiple component of p. In order to make V; a linear (—1)-vertex one
must contract C; U S(n — 1) in the case of the first statement from (a), and
CLUS(n—2)UF in cases (b') and (b"). The rest of statement (a) can be

checked in the same manner. O
S(n—-1) -n on S(k)
(a) (b") (b") l
-1 )él -1 él —'m—liv2
-n—1 oW; S(n —2) -n Vi
-3 )F -1 )él
S(m—1)

S(m —2) S(n —2)
-3 oF

S(m — 2)

Figure 4. The graph G, — C..

-

6. The graph G(D).

In this section we still denote the graph of (1) by G;. We also use notation
from Fig. 2 and Lemma 3.6. By Lemma 4.4, the graph G, looks like in
Fig. 3a. In particular, G%, and G, are empty and the weight of E; is —m.
As we mentioned in 3.1 $71(1) is an SNC-curve and it meets D normally, by
Lemma 2.12. Hence D up (1) = DuC, UG, is an SNC-curve and we may
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speak about its graph. The aim of this section is the following

Theorem. The graph G(f) uC,u 6'2) looks like one of the graphs in Fig.
5.

It is worth mentioning that the righ-hand side vertical parts of these
graphs correspond to the subgraph G, and in each of these graphs the num-
ber of edges between vertices C; and H, is m — 1.

6.1. We prove this Theorem in several steps using the fact that either fIzqu
or E; U H, UG} is contractible, by Lemma 3.6 (iv).

6.1.1. Lemma. Suppose that H, UG? is contractible and that G} and G3
are not empty. Then the graph G(D U C; U C5) looks like in Fig. 5a.

Proof. By Proposition 5.4, the weight of H,is-1, and G? is a standard graph,
say S(n — 1) where n > 1. By Lemma 5.4, G} is a linear graph consisting of
a standard graph S(k) and a vertex V; of weight —n — 1. After contracting
H,U G? the weight of the image of F, becomes n — 1 and one can see that
this new graph can be reduced further to a graph from Theorem 2.9 via an
RM-procedure only if k = m — 1 and H, and V; are not neighbors in G(D),
i.e. G(D) looks like in Fig. 5a.

It remains to check the position of C; and C,. Note that, since G and G?
are not empty, C; is a multiple component of the divisor $*(1), by Lemma
3.1 (4) and Lemma 5.4. Therefore, Hz does not meet C;, by Lemma 2.12.
Since G, — C, looks like in Fig. 4a, C, cannot be the upper endpoint of G.
Otherwise, all vertices of G? are multiple components of p*(1), by Lemma
5.5, i.e. H, meets a multiple component which contradicts again Lemma
2.12. Since H, is a section and since it meets G} it does not meet C, or
C,. According to Proposition 3.6 it meets G} at an endpoint, and, as we
mentioned above, this endpoint is not V;. This yields Fig. 5a. Note also
that the intersection number of H, and each fiber of p is m since m is the
same as my in Proposition 3.7. (Recall that we replaced m, by m in 4.4.)
By Lemma 2.12, H, meets p~1(1) at m different points. It follows from Fig.
5a that only one of these points does not belong to C;. Hence the number
of edges between C, and H, is m — 1. O

Remark. The argument at the end of the proof about the number of edges
between C, and H, will be valid for all graphs in Fig. 5 and 6.
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Figure 5a. The graph G(D U (C; U ().
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Figure 5b. The graph G(D U (C; U (,)).
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Figure 5c. The graph G(D U (C; U (,)). (In this graph m > 2).
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S(m —1)

Figure 5d. The graph G(D U (C; U ().
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6.1.2. Lemma. Suppose that E, U H, U Gi is contractz'b]e, byt IgﬁAU Gi is
non-contractible. Let G} and G} be non-empty. Then G(D U C; U C5) looks
like in Fig. 5b or like in Fig. 6a and 6b.

Proof. By the assumption of Lemma, in some step of an RM-procedure we
have to contract the image of E; while the image of H U G1 is not empty
yet. Therefore, G} = S(m —2) UG'. After contracting E; U H, U S(m — 2),
the image of G' must be contractible. If F is the vertex in G' which is the
neighbor of S(m — 2) then one can see that the weights of G' — F' in this
last image are the same as in the original graph G(D), i.e. none of them is
-1, by Lemma 5.2. By Proposition 5.4, this means that the weight of F' in
this image is —1 and all other weights are —2, i.e. G' — F = S(n — 2). By
construction, only two neighbors of F' are shrunk before F' while contracting
E; U H, U S(m —2). This means that the weight of F in G(D) is —3. Note
also that after contracting of E; U H,U Gj the weight of E, becomes n — 1.
Since the weights of G? are < —2 (Lemma 5.2) the weight of H, must be 0,
by Theorem 2.9. There are two possible forms of the subgraph G? described
in Lemma 5.4 (b')-(b”). Form (b’) and Theorem 2.9 yield the same G(D)
as in Fig. 5b. The same argument, which was used at the end of the proof
of Lemma 6.1.1, shows that in Fig. 5b H, does not meet C, and that C, is
the lower endpoint of G; which concludes the description of Fig. 5b.

Assume that G? has form (b”). This graph has two endpoints one of
which is V;. Assume that the weight of the other endpoint is different from
—n. By Theorem 2.9, V; must be a neighbor of H,. On the other hand V;
is a multiple component of $*(1), by Lemma 5.5, and it cannot meet H,, by
Lemma 2.12. Hence case (b”) does not hold unless the other endpoint of G?
is a neighbor of H, and, therefore, has weight —n. The last condition holds
only whenn =2and £k > 1 or whenn=m+1 and kK = 0. When n = 2 the
last statement from Theorem 2.9 implies also that k = 1. This yields G(D)
as in Fig. 6a and 6b.

The same argument as in 6.1.1 shows that in Fig. 6a and 6b C, must
be the lower endpoint of G; and fIz does not meet C’l which concludes the

description of Fig. 6a and 6b. O
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-2
-1 )
m El /
1

S(m —3)

A

H

30 F

E,

S(m —1)

Figure 6a. The graph G(D U (C, UACA'z)) (When m = 2 the vertices above
F are absent and H, is a neighbor of F.)
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-2
-m o_g_l___.____:)l
~ S(m —3)
H,
—31 F
S(m—1)
—1 C él
—1
E,
S(m —1)

Figure 6b. The graph G(D U (C; U C,)). (When m = 2 the vertices above
F are absent and H, is a neighbor of F'.)
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Figure 6¢. The graph G(D U (€, U(,)). (In this graph m > 2.)
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-1
-2 o'El—o
H,
. 1
- : S(n—1
[ oy
-2

Figure 6d. The graph G(D).

6.1.3. Lemma. Let G! and G? be non-empty. Suppose that E, U H; U G}
is contractible and H, U G} is contractible. Then G(D U C, U Cs) looks like
in Fig. 6¢.

Proof. By Proposition 5.4, G} must be a standard graph S(k). After con-
tracting H; U G! in an RM-procedure we have to contract the image of FE,
i.e. its weight must be —1. This implies that £ = m — 2. In particular, since
G! is non-empty m > 2. After contracting E; U H; UG? the weight of E,
becomes 0. Hence E, survives an RM-procedure and it must have a neighbor
of a non-negative weight after this procedure, by Theorem 2.9. Since G? has
weights < —2, by Lemma 5.2, the weight of H, is 1, by Theorem 2.9. By
Lemma 5.4, G? is a linear graph consisting of a standard graph S(n — 1)
and a vertex V; of weight —m < —2. The last statement of Theorem 2.9
implies that H,is a neighbor of V;. This leads to G(ﬁ) as in Fig. 6c. The
position of C, and G, may checked in a manner similar to 6.1.1 (fIl meets
the upper endpoint of S(m — 2) since it is the only non-multiple component,
by Lemma 5.5). O

6.1.4. Lemma. Let either G? or G} be empty. Then G(D) looks like one
of the graphs in Fig 5c, Fig. 5d (wzthout vertices C; and C,), and Fig. 6d.

Proof. Recall that G; — (01 U CQ) is standard, by Corollary 5.4. Thus
G! = S(k),G? = S(I) where k,l > 0 and kIl = 0. We need to consider
several possibilities.

Case 1: the graph H, U G? is contractible, i.e. H, is a (—1)-vertex, by
Proposition 5.4. After contracting this subgraph and the subgraph H; U G}
we obtain the linear graph E;, UE,US(m— 1) where the weights of E;, and E,

become k —m +1 and ! respectively. Theorem 2.9 implies that k=m,l =0,
(i.e. G? is empty), and G(D) looks like in Fig 5d.
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Case 2: the graph H,U G? is non-contractible, the weight of H,is >0 (by
Lemma 3.6), and E; U H, U G1 is contractible.

Subcase 2a: k = 0,1 > 0. One can contract E; U H,. This means that m = 2.
After this contraction the weight of E, becomes 0 and Theorem 2.9 implies
that the weight of H, is 1. Hence G(D) looks as in Fig. 6d with n = + 1.

Subcase 2b: k > 0, = 0. One can see that the only way to contract
E, U Hy U 8(k) is to require that k = m — 2, i.e. m > 2. After this
contraction the weight of E, becomes 0. Thus the weight of H, is 1, by
Theorem 2.9, and we deal with Fig. 5c. O

6.2. We shall need the following procedure. Contract all components of
p71(1) except for C; (we can do this, by Lemma 5.2) and contract all com-
ponents of p~!(co0) except for one. We obtain a morphism 4 : X = Q where
6 and @ are the same as in Theorem 2.6. Put H; = 5(ﬂk) and let g be the
same as in 2.6. Then E = ¢~ '(oo) and H; generate a basis in the second
homology group of Q. (Recall H, is a section, i.e. H, - E = 1.) This implies
that Hy, & mH, + sE since the intersection H, - E is m. This also implies
that a basis of the second homology group in X consists of C’l,ﬁ 1, and the
components of the curve B which is the union of all components of D except
for H, and H,.

Lemma. Let H, be homology equivalent toﬁkél + 1H, + U where U is a
linear combination of components of B and Hy. Then k = *1.

Proof. We have another basis of the second homology group of X generated
by the components of D [R]. Note that in order to obtain the second basis
from the first one it suffices to replace ¢, by H,. Hence the determinant
of the transition matrix coincides with k. This transition matrix must be
invertible and, therefore, the determinant must be +1. O

Convention. From now on we suppose that ¢~'(co) = d(E;) where E; is
from Fig. 2, i.e. in the description of § we have to contract all components
of p~1(00) except for E; (we can do this since the graph of the fiber p~*(oc0)
looks like in Fig. 3a).
6.3. Lemma. Let the notation be as in 6.2.
(a) Suppose that the subgraph Gy of G(D U C; U Cy) looks like in Fig. 6a.
Then

§*(H,) = H, +4mC, + U,

and R X
6*(H2) = H2 + (2m - 1)01 + Uz

where Uy and U, are linear combinations of components of B.
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(b) Suppose that the subgraph G, of G(D U €, U Cs) looks like in Fig. 6b.
Then
J*(Hl) = H1 + m(m + 2)01 + U1

and
0 (Hy) =2 Hy+ (m* +m —1)Cy + U,

where U, and U, are linear combinations of components of B.

(c) Suppose that the subgraph Gy of G(D U C, U C,) looks like in Fig. 6c.
Then
6*(H1) = Hl + ((m - l)n + 1)01 + U1

and
(T'(Hg) = H2 + (m — 1)7101 + Uz

where U, and U, are linear combinations of components of B.

(d) Suppose that C; and C, are endpoints of Gy, i.e. Gy — (CrUGC,) is
a standard graph S(n — 1), by Corollary 5.4. Let n > 1 and let V; be the
endpoint of S(n — 1) which is the neighbor of C; in G, (may be V; = V3).
Suppose that Hy, meets C, at | points.

(d') If the section H, meets C, and H, meets V, then

6*(H1) =~ E[l + nél + U1

8 (Hy) = Hy + (nl+1)C, + U,

where Uy and U, are linear combinations of components of B.

(d") If the section Hy, meets Vy (and, therefore, H, does not meet S(n — 1),
by Lemma 2.10) then
O(H)=H, +Ci+ U,

(5*(H2) = ﬁz + nlC’l + U2
where Uy and U, are linear combinations of components of B.

Proof. All cases are similar and we consider (a) only. Recall that morphism
0 is a composition of blowing-ups §;0-04d;. Put 0; = dj0-00; : X; = Q
and let E; be the exceptional divisor of ;. Suppose that D is an SNC-
divisor in @ and that the blowing-up J; takes place at the common point of
components E' and E" of the divisor o;_, (D). Then the multiplicity of E;
in 07(D) is the sum of multiplicities of E' and E" in oj_, (D). Hence the
multiplicity of C; in the divisor 6*(H}) (which is the coefficient before C, in
the formula (a) for §*(H;) (k = 1,2) in the statement of the Lemma) must
be the sum of multiplicities of its neighbors F' and V; in the graph from Fig.
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6a. Let H;, H;, F' and V] be the images of 6*(H,), 0" (H3), F, and V; after
contracting C'l.

When m = 2 an easy computation shows that the multiplicities of F' in
H] and Hj are 3 and 1 respectively, the multiplicities of V] in H] and H;
are 5 and 2 respectively, and the multiplicities of V; in H] and H} are 2 and
1 respectively.

Note that in general case after contracting C, the graph of the fiber over
1 is the union of S(m — 1), V{ which is a (—1)-vertex, V;, whose weight is
—m — 1, a vertex of weight —2, and the image of C,. The vertex F' is the
endpoint of S(m — 1) that is a neighbor of VJ. One may contract V; and
obtain a similar linear graph but with m replaced by m — 1. Therefore, we
may apply induction which shows that the multiplicities of F’, V], and V,
in H] are 2m —1,2m + 1, and 2 respectively, and in H} they are m — 1,m,
and 1 respectxvely Hence the multiplicities of C, in H; and H, are 4m and
2m — 1 respectively. O

6.4. The Proof of Theorem 6.1.

We need to check the position of C,and G, in Fig. 5c¢ and 5d (in particular,
the fact that there is only one edge between C; and H,) and we have to show
that none of graphs from Fig. 6 can hold.

Case of Fig. 5c. Recall that in this case G} = S(m — 2) with m > 2 and
G?is empty. Since H; meets S (m — 2) and since H, is a section it does not
meet C; and 02 The second horizontal component HZ meets p~(1) only at
pomts from C, or Co, by Lemma 2.10. Let it meet C,atl points and, thus,
C, at m — [ points. Let Vi and V> be the endpoints of S(m — 2). Suppose
that V; is the neighbor of C in G;. One may always suppose that H, meets
Vs (otherw1se just switch mdlces of C; and C,). Let 6,Q,q,H;,E be as in
6.2. Since H, = mH; + sE, Lemma 6.3 (d”) implies

where U is again a combination of components of B. The coefficient before
C, is +1, by Lemma 6.2. Hence either [ = 1 and we deal with Fig. 5c or
m = 3 and | = 2. But in this case V; = V, and switching the indices of ¢
and C, we obtain again Fig. 5c.

Case of Fig. 5d. Similar argument implies that
Hy=mH, +(m—-(m+1))C,+U

where U is a linear combination of components of B. Hence [ = 1 which
shows that the position of C; and C; in Fig. 5d is correct.
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Case of Fig 6a. Since H, & mH, + sE Lemma 6.3 (a) implies
H, = mH, + (4m? — 2m + 1)01 +U

where U is again a combination of components of B. Hence the coefficient
before C) is not 1 and we have to disregard this case, by Lemma 6.2.

Case of Fig 6b. Since H, = mH; + sE Lemma 6.3 (b) implies
Hy=mH +(m*+m?>—m+1)C, +U

where U is again a combination of components of B. Hence the coefficient
before C; is not +1 and we have to disregard this case, by Lemma 6.2.

Case of Fig 6¢. Since H, =2 mH; + sE Lemma 6.3 (c) implies
H2 mHl [(m - 1)2n + m]él +U

where U is again a combination of components of B. Hence the coefficient
before C; is not +1 and we have to disregard this case, by Lemma 6.2.

Case of Fig. 6d. (We owe the argument in this case to the referee.) First
consider n > 1. Since Gj is empty and since H2 meets S(n — 1) the section
H, meets (1) only at one point of 01 U C,. One may suppose that it
meets C’l since the components C, and C, are symmetric in this case. Note
that H, cannot meet C’l Otherw1se, since m = 2, it does not meet C,.
Hence C, is obtained from Cj, by deleting one point, i.e. it is isomorphic to
C in contradiction with Corollary 2.13. Let V; and V, be the endpoints of
S(n—1). Suppose that V; is the neighbor of C in G;. First consider the case
when H, meets V;. Agaln 0,Q,q, H; are the same as in 6.2. Recall that the
morphism ¢ is obtained by contracting all components in the fiber p~*(00)
but E; and all components in the fiber p~!(1) but C,. Hence one may check
that H, is smooth and meets H, at one point with contact order n — 1, i.e
H,-H, =n—1. The description of § easily implies that H, - H; =n—1 and
H, - Hy, = n+ 2. Recall that H, 2 mH, + sE and m = 2. Since H; - E =1
in order to get H, - H, = n — 1 we must require that s = —(n — 1), ie
H, =2H, — (n—1)E. Since E- E =0 we have H, - H, = 0 in contradiction
with the result of our previous computation.

Thus f{z meets V,. Since Hy 2 mH; + sE, m = 2, and since fIQ does not
meet C; Lemma 6.3 (d’) implies that

H,~22H, +(2n-1)C +U

where U is again a combination of components of B. Hence the coefficient
before C is not £1 and we have to disregard this case.
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Now consider Fig 6d with n = 1. Hence p~!(1) = C; U C,. Since m = 2
the fiber p’l( 1) meets D at three points none of which is C1NC;, by Lemma
2.12. Thus D meets either C; or C, at one point, i.e. either C; or C, is
isomorphic to C. This contradicts Corollary 2.13. O

The graphs G(D U C; UC,) from Fig. 5 imply that H, meets p~1(1) —
at one point b, and that C; N D consists of two points. Hence we have

6.4.1. Corollary. The curve C, is isomorphic to C* and H, meets p~ (1) —
C, at one point b,.

Let the notation be as in 6.2. Recall that morphism § from 6.2 implies
the contraction of all components of p~!(1) but C, and all components of
p~1(c0) but F,.

6.4.2. Corollary. The surface Q is a quadric CP' x CP! such that q is
the projection to the second factor and H, is a section for this projection.

Proof. One can see from Fig. 5 that H, - H; = 0. The statement of Lemma
follows from the fact that the only Hirzebruch surface which admits a zero
section is the quadric. O

6.4.3. Put Q' = Q — ¢ *(c0), H} = H,NQ*, and b= H} N H}.

Corollary. In the above notation there exists a coordinate system (u,v) in
2 = Q' - H, so that q(u,v) = u and the curve Hy — b is given by the
parametric equations u =t™ and v = (t —1)"' with t € C — {1}.

Proof. Tt follows also from Corollary 6.4.1 and the description of the mor-
phism § that H, meets the fiber ¢7!(0) at one point a, the fiber g=!(oc0)
at one point ¢, and the curve H; at one point b with contact order 1, i.e
H, - H, = 1. Therefore, every section of the projection ¢ which is homo-
logically equivalent to H; meets H, at one point. Thus one may consider
the morphism r : Q — H, = CP! that assigns to each point in @ the in-
tersection of H, with the section through this point which is homologically
equivalent to H;. (The existence of such a section follows from Corollary
6.4.2.) Choose a coordinate on H; so that a corresponds to —1, ¢ corresponds
to 0, and b corresponds to co. Then the restriction of functions ¢ and r to
C? = Q — (H, Uq!(00)) produces the desired coordinate system. a

7. Main Theorem.

7.1. Let K be the curve that consistsAof all components of D but ﬁz and
let @', q, H, be as in 6.4.3. Note that X — (K U(C)) is naturally isomorphic
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to Q' — H} and, therefore, it is isomorphic to C2. Under this isomorphism
the curve H* := H, — ({b,} U (H, N K)) (where b, is from 6.4.1) is mapped
onto Hj — b from 6.4.3. Our construction of the polynomial forms is based
on the following simple observation.

Lemma. Let X; = X — (KU C’l) and Xo = X — D. Let @ be a primitive
polynomial on X, such that Hy N X; = ¢~1(0) and let ¢ be the rational
function on X which eztends ¢. Let L be an irreducible curve in X such
that L:= LN X, is isomorphic to C and disjoint from H,NX,. Let fbea
primitive polynomial on X, such that L = f~1(0) and let f be the rational
function on X which eztends f. Then

(1) the curve Ci N X, is the zero fiber of a polynomial that coincides with
the restriction of either ¢ to X, or ¢~ to Xp;

(2) the curve L N X, is the zero fiber of a polynomial that is the restriction
of a rational function f@™ where m € Z.

Proof. We denote by U, (where k is natural) a divisor which is an integer
combination of irreducible components of K. Suppose that the zero fiber of
a primitive polynormal 1 on X, is the curve C’1 N Xz and 1,/) is the rational
function on X which extends 1. Then the divisor of P is C, +1H, + U, and
the divisor of ¢ is nC, + H, + U, where n,l € Z. Hence the divisor of <pz/; "
is (1—nl )ﬂg + U;. Since the divisor of a rational function is homologically
trivial we see that (nl — 1)H, is homologically equivalent to Us. But the
components of D form a basis of the second homology group of X [R]. Thus
U; is the zero divisor, nl = 1, i.e. n = %1, and 1,b = cp*! where c is a
nonzero constant.

Suppose that h(z) =0is a polynomial equation of the curve Ln X, in
X, and h is the rational function on X which extends h. The divisor of f is
L+sC,+U, and the divisor of h is L+mH,+Us where s,m € Z. Using again
the fact that irreducible components of K U C, are linearly independent as
elements of the second homology group of X, one can see that h coincides
with f @™ up to a nonzero constant factor. O

7.2. Since X, is isomorphic to the surface Q' — H; from Corollary 6.4.3 there
exists a coordinate system (u,v) on X; such that p(u,v) = u and the curve
H* is given by the parametric equations u = t™ and v = (¢ — 1)~!. Thus
H* is given by the zero fiber of the polynomial p(u,v) = v™u — (v + D)™,
Note that the line L = {v = 0} does not meet H* and matches with the
hypothesis of 7.1. We would like to emphasize that the existence of this line
L is a key of the proof of Main Theorem.

Lemma. Let @,u,v,L be as above, let X;, X, be as in 7.1, and let ¢ and D
be the rational functions on X that extend ¢ and v respectively.
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(1) If G(D) looks like in Fig. 5a, then the primitive polynomial on X, whose
zero fiber is C) coincides with the restriction of ¢ to X,, and the primitive
polynomial on X, whose zero fiber is L coincides with the restriction of 0™
to X,.

(2) If G(D) looks like in Fig. 5b, then the restriction of = to X, is a prim-
itive polynomial whose zero fiber is Cy, and the zero fiber of the polynomial
that is the restriction of ™" to X, is L.

(3) If G(D) looks like in Fig. 5c, then a primitive polynomial whose zero fiber
is Cy coincides with the restriction of ™! to X,, and a primitive polynomial
on X, whose zero fiber is L coincides with the restriction 9$~' to X,.

(4) If G(D) looks like in Fig. 5d, then a primitive polynomial whose zero fiber
is Cy coincides with the restriction of ¢ to X5, and a primitive polynomial
on X, whose zero fiber is L coincides with the restriction ¢ to X,.

Proof. Embed X, into the surface Q' ~ C x CP' so that v can be extended
to a regular mapping Q' — CP' and the natural projection ¢; : Q' — C
is the extension of the function u. Put H} = Q' — X, and H; equal to the
closure of H* in Q'. The divisor of the extension of ¢ to Q' is H} — mHj.
Note that the point b = H; N H{ corresponds to u = 1,v = oo. Consider the
local coordinate system (%, %) = (u — 1,v7") at b. The function

(v+1)™ —o™

ou,v) =w™ —(v+ )" =v" |jlu—-1- o

can be rewritten in this new coordinate system as 9~™(% — g()) where g
is a polynomial. Hence H,; meets H; normally at b which is a point of
indeterminacy of type z/y™ for the extension of ¢. In order to obtain the
surface X — p~!(co) we need to blow Q' up at b and infinitely near points
in such a way that after this blowing-up the graph of the fiber over 1 looks
like a subgraph G; in Fig. 5. Let n and m be as in Fig. 5. Then induction
in n and m shows that the divisor of ¢ contains the component C, with
coefficient 1 in cases (a) and (d), and with coefficient —1 in cases (b) and
(c). Hence ¢ |x, is a polynomial on X, in cases (a) and (d), and ¢! |x, is
a polynomial in cases (b) and (c). It is also easy to check using induction
in n and m that the divisor of the extension # of v to X contains C; with
coefficient —n in cases (a) and (b), and with coefficient —1 in cases (c) and
(d). Hence in case (a) 9™ is a polynomial on X, which does not equal zero
on C;. In case (d) we have the same with n = 1. In cases (b) and (c) such a
polynomial on X, is given by 9¢~" with n > 1. Note that these polynomials
on X, have zero fiber equal to L. O

Remark. Note that L = LN X, is isomorphic to C.
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7.3. Recall that C, is isomorphic to C*, by Corollary 6.4.1. Consider the
case when the subgraph of G* looks like in Fig. 5a. By the Abhyankar-Moh-
Suzuki Theorem [AM], [Su] and Proposition 2.13, there is a coordinate
system (z,y) in X, such that 9¢"|X, = z and

of + !
(a) Pl Xz = or
ok -1

where o(z,y) = z°y + g(z),degg < s and g(0) = —1. (When s = 0 we
suppose that o(z,y) = y.) For Fig 5d we have the same formulas but with
n=1.

For Fig. 5b we have 9¢"|X, = z and

of 4+ o
(b) (ﬁ_lle = or
zto® — 1.

For Fig 5c we have the same formulas but with n = 1.

Lemma. The number k equals 1 in formulas (a) and (b) above, i.e. one can
suppose that in case (a) p = z°y +a,_1z° ' +--- +a;z — 1 and in case (b)

~

Ppl=zy+a,_12° 4+ +az — 1.

Proof. Consider the first expression for ¢ in case (a). Note that k = 1 if the
system o*(z,y) + 2! —d = z — ¢ = 0 has one root for every generic complex
numbers c and d. Since o* +z! = ¢ = d and vp™ = = = c, one has v = ¢/d".
Putting this value of v in the equation p(u,v) = v™u — (1 +v)™ —d = 0,
we can see that this equation has only one root. Thus £k = 1. If I > s we
replace y by y + z!7**! and obtain the desired form of . Same argument
enables us to obtain the desired conclusion in the other case. O

7.4. Main theorem. Let p: C> — C be a primitive rational polynomial
whose zero fiber Ty is isomorphic to C*. Suppose that Ty is degenerate. Then
there is a polynomial coordinate system (z,y) in C? for which the polynomial
p(z,y) coincides with one of the following forms

(1) a(p"™ ! + (Y +2)") /" -

(2) a(™™ ! + (" 4+ z)™) /2™,

where a € C*, n and m are natural, m > 2,n > 1, in formula (2) n > 2
in the case of m = 2, P(z,y) = ™Yy + am_1 ™' + - + a1z — 1, and all
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coefficients @pm—1,... ,a; are determined uniquely by the condition that each
of the above forms must be a polynomial.

Proof. Multiplying p by a nonzero number we may suppose that I'; is the
second degenerate fiber of p. Let (u,v) be the coordinate system that we
used in Lemma 7.2. Recall that p(z,y) = u, by construction, and ¢(u,v) =
v™u—(v+1)™. Hence p(z,y) = (p+(1+v)™)/v™. According to the argument
in 7.3 v = z¢ ™" in cases (a) and (d). Thus p(z,y) = ("™ +(z+¢™)™)/z™.
In cases (b) and (c) v = z¢" and p(z,y) = (@' "™ 4 (=D 4 z)™) /2™,
Putting ¥ = ¢ in cases (a), (d) and 1 = ¢! in cases (b), (c) we obtain the
formulas (1) and (2). The polynomial ¥(z,y) coincides with z°y+a,_, 257 +
-+ 4+ a;z — 1. If s < m then one can see that the numerator in forms (1)
and (2) contains the monomial z°*y with a nonzero coefficient, i.e., p is not
a polynomial. Hence s > m. If s > m and the numerator does not contain
the monomial z™ then it is easy to check that I'y contains the line z = 0,
but it is not so. If this monomial belongs to the numerator with a nonzero
coefficient then I'y does not meet the line z = 0. Hence either I'y is not
degenerate or p is not rational, by Corollary 2.13. Contradiction. Hence
m = s. When n =1 in formula (2) we deal with Fig. 5c and, therefore, m
must be > 2. Note also that the coefficient before z7 in the numerator for
0 < j < mis of form ka; + g;(ai,... ,a;_1) where k is a nonzero integer and
g; is a polynomial (and g, is constant). If we want p to be a polynomial we
have to require that these coeflicients are zero which yields the claim about
TP, S O

7.5. Let f,g be polynomials given by forms (1) or (2) in Main Theorem. If
these forms have different discrete parameters then there is no automorphism
B of C? for which f o 8 = g. We shall follow [Z1] in the proof of this fact.
Let a,n,m be the same as in Main Theorem. We say that f € A,(a,n,m)
if f is given by form (1) with the corresponding parameters a,n,m. If f is
given by form (2) with given a,n, m we say that f € Ay(a,n,m).

Theorem. Let f € Ay(a,n,m) and h € Aj(a’',n',m'). If f is equivalent to h
up to a polynomial automorphism of C? thenk =l,a=a',n=n',m =m'.

Proof. Note that f~'(a) is the second degenerate fiber for f and h~'(a')
is the second degenerate fiber for h. Since any automorphism preserves
degenerate fibers, a = a'. By construction, the generic fiber of f is the m+1
times punctured Riemann sphere. Hence we must have the same for A and
m =m'. One can see that the fiber f~!(a) has a component of multiplicity
n. Therefore n = n'.

Assume, to reach a contradiction that f € A;(a,n,m) and h € Ax(a,n,m),
and there is a polynomial automorphism 8(z,y) = (6i(z,y),B:(z,y)) for
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which f o 8 = h. By Lemma 7.3, the multiple component of f~!(a) is given
by r(z,y) = ™y + g(z) = 0 and the multiple component of h~*(a) is given
by 7(z,y) = 2™y + g(z) = 0. By Nullstellensatz, r o 8 = ¢ (¢ € C*). Hence
it is easy to show that deg, 5, = 1,deg, 51 = 0, deg, B, = 0, deg, B, = 1.
Moreover, f(z,y) = ¢z and Ba(z,y) = "y (c',c" € C*) . (Indeed, if
Bi(z,y) = cz+d' with d’' # 0, then r o 3 contains the monomial z™~ 'y with
a nonzero coefficient, but this is not so.) Let f = ('™ + (p™ + z)™)/z™
and h = ("™ + (yp™ +z)™)/z™. Since ¢ = 0 is the multiple component of
f~'(a) and v = 0 is the multiple component of h~(a) , we have épo 3 = 1.
Put z = @ o 8. Then the mapping (z,y) — (z,z) is birational. Note that
f o B has the form (z!*"™ + (2" + £)™)/z™ in the coordinate system (z, z)
and h has the form ((¢z)"™~! + ((¢z)™ + z)™)/z™. These two expressions
are not equal, i.e., f o 8 # h. O

A. Appendix: The proof of Lemma 4.1.

The proof of the existence of the isomorphism ¢ from Lemma 4.1 consists
of two steps. First, we reduce the problem to a question about some Laurent
polynomials. Second, we establish some symmetry of the coefficients of these
polynomials which enables us to solve this question.

A.l. Reduction.

We revive notation from Section 4.1. We introduce also Q* = Q*—q~*(w,)
where wy (k = 1,2) is the group of my-roots of unity.

A.1.1. Lemma. The numbers m; and my are relatively prime.

Proof. The mapping é generates a homomorphism 4, of the second homology
groups. Recall that a basis of the second homology group of @ consists of two
elements E and F where E may be viewed as a fiber of q. The irreducible
components of D generate a basis in the second homology group of X [R].
Obviously, the image of every vertical component of D under 4, is a multiple
of E and 6, (Hy) = myF + niE. Since 4, is surjective its image contains F.
This is possible only if m; and m, are relatively prime. O

Remark. Note that either ms; > 1 or m; > 1 since otherwise the generic
fiber of p is isomorphic to C* in contradiction with our assumption about
this polynomial. We suppose in this section that m, > 2. (If this condition
does not hold we can switch the numbers m; and m,.) Using the fact that
m; and m, are relatively prime, we suppose also that m, is even if and only
if my = 1. (If the last condition does not hold we can again switch m; and
my.)

A.1.2. Recall that in the notation of 4.1 for every curve F in Q (or in Q'
with [ < k) the curve F* is F N Q*. Similarly, if 1 is a morphism from Q



RATIONAL POLYNOMIALS WITH A C*-FIBER 185

(or @) then 1y is the restriction of 1) to Q*. Consider the action u of w;, on
Q' given by u.(z, (v; : v2)) = (ez,(y; : y2)) for every € € w,. It generates
a natural morphism 7 : @' = Q'/w; = Q'. Note that 7, : Q* — @Q? is an
unramified covering of Q? and that Q* = 771(Q?%). Let H}, = 77'(Hy).
Denote by 'H! , (resp. "H. ) the image of H! , under ‘¢ (resp. "¢) where
‘o and "¢ are defined in 4.1. It is easy to see that 'H, = 771('H}) and
"H ',,,c = 71("H}). The proof of the next lemma uses some properties of the
curve H}, which will be checked in A.1.3.

Lemma. Suppose that there ezists an automorphism ¢ : Q* — Q* such that
(i) C(H:,) ="H;:, for k=1,2;

(i) gs 0 ¢ = gs.
Then Lemma 4.1 is true.

Proof. Let p? = (' o py. o (. We need to show that pu? = pu. for every
€ € wy. Then one can see from definitions that ¢ can be pushed down to an
automorphism £ of Q* with the desired properties.

By construction, y. and u? preserve 'H}, and we consider the restriction
of both actions to this curve. In Lemma A.1.3 (iii) below we shall show that
there exists a normalization v : C — H} , such that gov(s) = s™ where sisa
coordinate on C. This implies the existence of normalization ‘v : C — 'H} ,
so that g o 'v(s) = s™2. Since go u, = £q and g o u = eq the restrictions of
pe and pl to 'H}, generate automorphisms of C which preserve the origin
s = 0. Hence these automorphisms are homothetic transformations and,
therefore, they are commutative. Thus the restrictions of p, and p? to
'H!, are commutative and we may view the restriction of the mappings
"e = p7 o p? to this curve as an w;-action.

Note that g4 o ‘u. = ¢4. Hence it suffices to show that the restriction of
this mapping to the generic fiber E = CP? of ¢4 is identical. Consider the
set S =EnN 'Hi,z- By construction, 'u. preserves S. Since S C 'H}, the
restriction of the mappings 'u. to S may be viewed as an w;-action on S.
Recall that 'H?, is irreducible, by Lemma A.1.3 below. Hence every orbit
of 'y, in S is of the same size | and, of course, [ is a divisor of m;. But S
consists of m, points. Since m; and m, are relatively prime this implies that
I =1, i.e. the restriction of ‘u. to S is identity. If m, > 3 we are done since
the restriction of 'y, to E is a linear fractional transformation and thus it is
identity as well. When m, = 2 then m; = 1, by Remark A.1.1. Hence the
group wj is trivial which implies again the desired conclusion. O

A.1.3. We need to consider the curves H}, and H} , from A.1.2 more closely.
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Lemma. (i) The curves H, (k = 1,2) are smooth and do not meet each
other;

(ii) the curve H}, consists of m, irreducible components each of which is a
section, i.e. the i-th component (i = 1,... ,m,) has a normalization given
in the coordinate system (z,(y; : y2)) on Q' = C x CP! by formulas z =
t,y2/y1 = e1i(t) where t runs over C and e,; is a rational function of t
(which may be identically oo);

(iii) there ezists a normalization C — H}, C Q' = C x CP' of H} , given
by T = s™2,ys/y; = ex(s™) where s is a coordinate on C and e, is a rational
function (in particular, H}, is irreducible);

(iv) the function ey(t) has a simple zero at t = 0 and the function e, ;(t) has
a pole at t =0 for everyi=1,... ,my .

Proof. The curve H} = H,,—p~'({oo}) is isomorphic to C since $~*(co0) N Hy
is a point, by Lemma 2.12. Since the restriction of § to X — p~1({1,00})
is an isomorphism the mapping d | p may be viewed as a normalization of
the curve Hf = H, N Q'. Moreover, H} — ¢ '(1) is smooth and H] does
not meet H} outside the fiber g~(1). By construction, 7, : @* — Q? is an
unramified covering and the restriction of 7 to each fiber of g, generates an
isomorphism of fibers of g;. This implies that the curves H} , (k = 1,2) are
smooth and and do not meet each other which yields (i).

The restriction of p to H 2 is an my-sheeted cyclic covering of C*. In
particular, one may introduce a coordinate ¢ on H & so that p(t) = t™*. Hence
the curve H} C Q' = C x CP! has the following parametric representation
z = t™,y2/y, = ei(t) where e, is a rational function. Since the mapping 7
in the coordinate system (z, (y; : ¥2)) has the following form (z, (y1,y2)) —
(™, (y1 : y2)) the curve H} , = 7-'(Hy) (k = 1,2) is given by the equations
™ =" ya [y = ex(t).

For k = 1 this implies that H}; consists of m; components and a normal-
ization of the i-th component may be chosen in the form z = ¢, y,/y;, = e;(et)
where € € w;. This yields (ii).

For k = 2 the curve H}, is irreducible since m; and m, are relatively
prime and, by putting ¢ = s™!, we obtain the normalization of this curve
given in (iii).

Recall that H] and H; meet the fiber ¢7*(0) at different points ¢; and
c; which coincide with the points (0 : 1) and (1 : 0) respectively in the .
coordinate system (y; : y2) on ¢~'(0) = CP! (see 4.1). Hence e; ;(t) has a
pole at t = 0 for every 7. As we mentioned in the beginning of the proof
the curve H} is smooth at c,. Hence e,(t) must have a simple zero at t = 0
unless my; = 1. But m, cannot be 1 due to Remark A.1.1 which concludes
the proof. O
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A.1.4. Let F be a component of H}, and let A be the union of H} , and the
other components of H 71,1- We want to modify these curves using birational
mappings described in the following

Lemma. Let F be a section in Q' i.e it meets each fiber of q, at one point.
Suppose that A is another closed curve in Q' such that q, is non-constant
on each component of A. Let a € ANF and b = q;(a). Then there ezists a
birational mapping of Q! into itself such that

(i) its restriction to Q' — q;'(b) is an automorphism which preserves the
function q |g1_g-1();

(ii) the proper transforms of A and F do not meet in the fiber over b.

Moreover, suppose that the mapping q, |4 is m-sheeted, m > 1, and v, (a)
consists of m points where v4 : A"™ — A is a normalization of A. Then

(iii) the proper transform of A meets the fiber over b at more than one point.

Proof. Our main tool will be Nagata’s elementary operations between ruled
surfaces. Let E = q~'(b). Since F is a section F' meets E at one point a
which belongs to A, by assumption. Choose a local coordinate system (z,t)
with origin at a so that ¢(z,t) = ¢t. Since F' is a section one may suppose
that its local equation is z = 0. The local equation of A is z*¥ = t!g(t) where
g is holomorphic and g(0) # 0. Consider the following birational mapping.
First we blow Q' up at a. After this the curve E is replaced by two (—1)-
curves F; and F, where E; is the proper transform of E,. Contract E;.
As a result we obtain a new sample of Q' in which the fiber E is replaced
by E' and the curves F and A are replaced by their proper transforms F’
and A’. One may choose a local coordinate (2',t') system with origin at
a' = E' N F' so that 2’ = z/t and ¢’ = t. In this system the local equation
of F'is 22 = 0. When | < k one can check that A' does not contain a’
and, therefore, does not meet F'. When [ > k the local equation of A’ is
2% = t""*g(t'). We see that the contact order between A’ and F' at a'
is less than the contact order between A and F' at a. Thus repeating this
procedure we finally obtain proper transforms F and A" of F and A which
do not meet each other in the fiber over b. Suppose that A" meets the fiber
over b at one point a”. Assumption on normalization implies that A consists
of m branches in a neighborhood of a” such that their local equations are
2" =g;(t") (j = 1,... ,m). Repetition of blowing-ups and blowing-downs in
the fiber over b makes some of these branches disjoint eventually. O

A.1.5. Recall that F is a component of H}, and A is the union of H],
and the other components of H},. By Lemma A.1.4, we may find a bira-
tional mapping 6 of Q' into itself so that 6 |g1_4-1(.,) is an automorphism
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which preserves q |o1_4-1(.,), the proper transforms of F' and A do not meet,
and the proper transform of A meets ¢~*(b) at least at two points for every
b € w;. Suppose that the proper transform of H!, consists of components
F,... ,F,, where F,, is the proper transform of F, and the proper trans-
form of H!, is H. In order to make notation shorter denote by H the
curve H? = H N Q?. The advantage of the long trip from H; and H, to
these curves is that we can represent H, F,... ,F,,, _; as affine curves in
Q? — F,,, & C* x C. Introduce a coordinate system (z,y) in Q' — F,,, so
that the restriction of ¢ to Q' — F,,, is the projection to the z-axis. It follows
from Lemma A.1.3 (iii) that H}, meets the fiber ¢~*(0) at one point only.
Hence H meets ¢~1(0) at one point only.

Lemma. There exists a coordinate system (z,y) in Q> — F,, = C* x
C such that the y-coordinate of the point H N ¢ '(0) is 0 and the curves
H,F,,...,F,, 1 have the following properties:

(i) the curves Ft (i = 1,... ,m; — 1) do not meet each other, and H* is
smooth;

(ii) HUUPM ™' F; meets ¢~ (b) at least at two points for every b € w;;

(iii) for each i =1,... ,m; — 1 there ezists a normalization v; : C* — F; C

C* x C of F; such that v;(t) = (¢, fi(t)) where t is a coordinate on C* and
[i(}) = @i ™ + Qin—1t™ 1 + ... + @i i, t* is a Laurent polynomial;

(iv) there ezists a mormalization v : C* — H C C* x C of H so that
v(t) = (t™2,h(t)) where h(t) = dnt™ + dp_1t"* + - -+ + dit* is a Laurent
polynomsal;

(v) k =m, and, in particular, my and k are relatively prime.

Proof. Properties (i)-(iv) follow immediately from Lemma A.1.3 and the
description of 6. For (v) we need to consider the birational mapping 6
more accurately. It is more convenient to denote now our usual coordinate
system (which was used in A.1.1 and A.1.3) on the first sample of @' by
(', (yy : v3)). Put ¥y’ = y5/y;. Recall that ¢, is the projection to the z'-
axis in the first sample of Q!. Since € is an isomorphism outside the set
g7 (w;) which preserves q; the restriction of § to Q' — (¢;*(w;,) U F,,,) has
form (z', (v} : ¥5)) = (z,y) such that z = 2’ and y = L(z',y’) where for
every ' € C —w, the mapping L(z',y’) is a linear fractional transformation
(r(z")y" + ra(z")/(rs(z')y’ + r4(z')) and ry,72,73,74 are polynomials for
which the roots of the polynomial ry = r;74 — 7273 are contained in wj.
Hence H which is the proper transform of H},’2 is given by z = t™2,y =
h(t) = (ri(t™2)ey (8™ ) + 2 (t™2)) /(13 (t™2) ez (t™) + r4(t™2)) where e, is from
Lemma A.1.3 (iii). Recall that e,(t) has a simple zero at ¢t = 0. Hence, since
the y-coordinate of the point H N q~*(0) is zero we have h(0) = 0. This
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implies r,(0) = 0. The assumption on r, implies that r;(0)r4(0) # 0. If
my < ms then, using again the fact that e, has a simple zero at the origin,
one can show that the first nonzero term of the Taylor series of h(t) at ¢ =0
is dt™ which yields (v). If my < m; then the same argument implies that
this Taylor series contains a nonzero term di™. It may also contain terms
of form d;t! where i < m,, but i must be divisible by m,. Due to the remark
after this theorem the coordinate system (z,y) can be changed so that all
terms whose exponents are multiples of m, have zero coefficients which yields
the desired conclusion. a

Remark. We have some freedom in the choice of the coordinate system
(z,y) from Lemma A.1.5 since we can always use a substitution (z,y) —
(z,cx'y + g(x)) where c is a nonzero constant, I € Z, and g is a Laurent
polynomial. Using this freedom we can suppose further that d; = 0 for ¢
divisible by m,.

A.1.6. Lemma. Suppose that

(1) n= _k;
(i) n; =—k; foreveryi=1,... ,m; —1;
(i) d_; =d; and a;_; = @;; for every j and everyi=1,... ,m; — 1.

Then Lemma 4.1 s true.

Proof. As usual, put 'F; = "¢, (F;),"F; =", (F;), 'H ="¢p,(H), and "H =
w2 (H). Assumptions (i)-(iil) and the description of H and F; given in A.1.5
immediately imply that ‘F; = "F,; and 'H = "H. We are going to show that
this implies the existence of { from Lemma A.1.2 and, therefore, the existence
of ¢ form Lemma 4.1. Put ¢ =", 007 0", 0'p, 00,0'p, where @ is from
A.1.5. By construction, this mapping is a diffeomorphism which preserves
the function g4, and (('H;,) = "H:,. We need to check also that this
mapping is an automorphism which is equivalent to the fact that ‘¢, 00,0,
is an automorphism. This is obvious. Indeed, in the local coordinate system
(z,y) from A.1.5 the mapping @ is given by (z,y) — (z,L(z,y)) where L
is a rational function. Hence ‘¢, 0 64 0 "¢, is given by (z,y) — (z, L(Z, 7))
which is a regular mapping and, therefore, an automorphism. O

A.2. Symmetry of the coefficients.

We put € = exp (2nrv/—1/m,) and suppose that “bar” means complezx con-
jugate for the rest of the paper. Most of the computation in this section is
based on the following observation.

A.2.1 Lemma. Let g(t) = b,t"> + by, _1t2 ' + - + b, t" € C[t,t7!] be a
Laurent polynomial where b, b, # 0. Suppose that all roots of g have absolute
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value one. Then for every_i between 0 and l, — I, we have by,b, ; = b,z_il—),l.
In partz’_cular, if by,_; = by,4; for some j such that 0 < 53 < I, —I; then
bi,—; = by, 4; for every 1.

Proof. Consider the Laurent polynomials g(¢~!) and g(%). Clearly, if ) is a
root of g(t) then A~! is a root of the above two polynomials, i.e. they have
common roots. Hence g(t™') = ct’;(?)— where ¢ is a nonzero constant and
I = —I; — ;. This implies the desired conclusion. O

A.2.2. Lemma. Let the notation be as in A.1.5. Then n = +k(mod m,),
and n and my is relatively prime.

Proof. Since the z-coordinates of the singular points of H belong to w;, the
roots of the Laurent polynomial h,(t) = h(e°t)—h(t) have absolute value 1 for
every s which is not a multiple of m,. Note that h,(t) = b5t"+- - -+bit* where
b = (¢* — 1)d;. Suppose that e # 1 and €** # 1. Then b, b # 0. By the
Vieta Theorem, |b%/bi| = 1. Suppose first that n and k # (m2/2)(mod ms,).
Then s can be chosen 2, and [b2/b%| = |bL/bL| - |(1 + €™)/(1 + €*)|. Hence
|1 +€™| = |1 + €*| which is possible only when n = +k(mod ms).

Now let either n or k = (my/2)(mod m,). In particular, m, is even and
my, = 1, by Remark A.1.1. Hence kK = 1. The case my = 2 is trivial since
d; = 0 for 7 divisible by m, (see Remark A.1.5). We want to show that
my cannot be greater than 2 when n = (my/2)(mod m,), and we need to
consider two cases.

Case 1: assume that m, > 6. By comparing |b3 /b%| and |b,/b}|, one can see
that |1+ e™ + €| = |1 + €* + €?*|. Since e” = —1 the left-hand side of this
equality is 1. Since e* = ¢ the right-hand side is |1 + £ + €?| which is not 1
when my > 6. Contradiction.

Case 2: assume that m, = 4. Since m; = 1 we have w; = {1}. Hence the
z-coordinate of every singular point of H is 1. This means that the only
root of each Laurent polynomial h, is 1. Consider hy(t) = h(v/—1t) — h(t)
and hs(t) = h(—+v/—1t) — h(t). Due to the remark about the roots of these
polynomials both of them coincide with t¥(¢ — 1)"~* up to constant factors.
On the other hand hs(t) = —h;(—+/—1t) which is a contradiction. (The
original argument in this last case was very complicated. The proof above
belongs to the referee.) ’

Since n = +k(mod m,) and k£ = m,, by Lemma A.1.5 (v), the numbers n
and m, must be relatively prime, by Lemma A.1.1. O

A.2.3. Lemma. In the notation of Lemma A.1.5 |di| = |d,|.
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Proof. Let b be as in the proof of Lemma A.2.2. Since |b}| = |bi|, by the
Vieta Theorem, we have |d, (1 — )| = |d(1 — €¥)|. Hence |d,| = |di| since
|1 — €| = |1 — €| in the virtue of Lemma A.2.2. O

Convention. From now on we suppose that d, = d;. Due to the above
Corollary we can always achieve this by a coordinate substitution from Re-
mark A.1.5.

A.2.4. Lemma. Let the notation be as in Lemma A.1.5. Then d,_; = d,;
for every i between 0 and n — k. If n = k(mod my) then d; # 0 only if
i — k = 0(mod m,).

Proof. Suppose first that n = —k(mod m,). As in Lemma A.2.2 introduce

the Laurent polynomial h,(t) = h(e*t)—h(t) = beti where s # 0(mod m,)
i=k

and b = (¢** — 1)d;. Recall that the absolute value of every root of h, is
1. Since d, = d;, by Convention A.2.3, and £°" = £*° we have b’ = 52.
Lemma A.2.1 implies that b5_, = EZM for every s. Hence d,_;(e"™* — 1) =
diyi (B~ 1), ie. dn_; = diyi. (We use the fact that d; = 0 when i is
divisible by m,.)

Consider the case when n = k(mod m,). By Lemma A.2.1, b%b,,, =
b _;b,, but now ™ = *s. Suppose that 2n # 0(mod m,). Then s can be
chosen 2 and b? = b}(g* +1). Hence bLbt,;(e” +1)(e ™~ +1) = bL_,b(e" "+
1)(e™® 4+ 1) and for nonzero b’s we have e ™™ + "™t — " — ™"t = (1 —
e~ (e™™ — &™) = 0. The last equality holds only if ¢ = 0(mod m,). Thus
biy; = 0 when i # O(mod m,) and b} = (¢* — 1)d;. Hence d,,_; = dyeri-

Let 2n = 0(mod m;). Then, by Lemma A.2.2 and Remark A.1.1, n =
+1(mod ms,), i.e. my = 2. Hence d; = 0 for even i, by Remark A.1.5. The
equality d,_; = dj; holds since n = —k(mod 2). O

A.2.5. Note that if n = —k(mod m,) then, using automorphism (z,y) —
(z,7'y) (where (z,y) is a coordinate system from A.1.5), we may suppose
that n = —k.

Lemma. Let f;(t) be as in A.1.5. Suppose that n = —k. Then for every
i=1,...,m —1

(l) n; = '—'ki and

(ii) for every j we have a;_; = @; ;.

Proof. First note that since the z-coordinates of the intersection points of
F; and H has absolute value 1 the Laurent polynomial f(t) = h(t) — f;(t™?)

has only roots with absolute value 1. Let f(t) = chtj with c,c, # 0. We
j=r

have to consider several cases
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1) s=nmy>n>-n>kmy=r;
(2) s=n>nmy > kmy>-n=r;
3) s=n;my >n > kimy > —n =r; and
4) s=n>nmy>-—n>kmy=r.

Consider (1). Assume that jo = s —n < —n — r. Then, by definition
of f, we have c¢,_;, # 0 and c,j, = 0 which contradicts Lemma A.2.1.
Similarly, one cannot have s —n > —n —r, ie. s—n = —n — r and,
therefore, s = —r and n; = —k;. By construction and by Convention A.2.3,
Cs—jo = dp = d_, = C_stj,- Hence c,_; = C_,; for every j, by Lemma A.2.1.
Since d;m,, = 0, by Remark A.1.5, we have ¢;m, = a;; which implies (ii) in
this case.

Exactly the same argument works in (2) and we consider (3). One may
suppose that jo = n;ms — n # kimy — r = n + k;m,. Indeed, otherwise
2n = 0(mod m,), i.e. m, is even and, by Remark A.1.1, m; = 1. The
statement of Lemma is true since m; — 1 = 0. Assume j, < k;mq —r. Then,
by definition of f, we have c,_;, # 0 and c,;;, = 0 which contradicts Lemma
A.2.1. Similarly one cannot have j, > k;m, —r and we have to disregard (3)
unless m, = 2. Exactly the same argument shows that (4) does not hold,
except for the case m, = 2 which is obvious. O

A.2.6. Lemma. Under the assumption of Lemma A.1.5 n # k(mod my)
unless my = 2.

Proof. Assume the contrary. The second statement of Lemma A.2.4 implies
that d; # 0 only if j — k = 0(mod m,). We are going to show that this fact

contradicts Lemma A.1.5 (ii). Let f(¢) = ZCjtj has the same meaning as
j=r

in the proof of Lemma A.2.5. We have again cases

D) s=nmy>n>k>kmy=r;

2) s=n>nmy >kmy > k=r;

(3) s=n;my >n>kmy>k=r;and

4 s=n>nmy>k>kmy=r.

Consider (1). Note that jo = s — n # k — r. Indeed, otherwise 2n =
0(mod m;). Since m,; # 2 this implies that n and m, are not relatively
prime which contradicts Lemmas A.1.5 (v) and A.2.2. Assume j, < k —7.
Then, by definition of f, we have ¢,_;, # 0 and ¢,j, = 0 which contradicts
Lemma A.2.1. Similarly, one cannot have s —n > k — r. Therefore, we have
to disregard (1) and, similarly, (2).

The second statement of Lemma A.2.4 and the construction of f imply
that ¢; = d; when j — k = 0(mod m,), ¢; = a;; when j = myl, and ¢; =0
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in all other cases. Consider (3). Note that ¢; = a;,, and ¢, = dx. Put \; =
¢s/C,. By Lemma A.2.1, ¢;_; = \;G4j. Put j = myl thena; ,,; = il mat-
Since d, = di, by Convention A.2.3, and, therefore, dp_j = Jkﬂ- we have
Gin;—1 = Ailn_m,. Hence

Aifi (tm2 ) = tnimz*nh(t) .

Same argument in case (4) gives similar formula. Suppose that v is a root of
h. Then in notation from A.1.5 the above formula implies then that the point
b = (v,0) (in coordinate system (z,y) from A.1.5) is a selfintersection point
of H and the multiplicity of H at this point is > m,. Moreover, for every
i the curve F; must meet this point as well. Hence the curve H U U ' F;
from A.1.5 meets the fiber g~1(b) at this point only which is a contradiction.
Thus this case does not hold. O

Combination of the above Lemma and Lemmas A.2.2, A.2.5 gives

A.2.7. Lemma. Applying an automorphism of (z,y) — (z,z'y) (where
(z,y) is the coordinate system from A.1.5 and | € Z) one may suppose that
conditions (i)-(iii) .from Lemma A.1.6 hold, and, therefore, Lemma 4.1 is
true.
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