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CHARACTERS OF THE CENTRALIZER ALGEBRAS OF
MIXED TENSOR REPRESENTATIONS OF GL(r,C) AND

THE QUANTUM GROUP Uq{gί(r,C)).

T O M HALVERSON

We consider the tensor product representation of m copies
of the natural representation with n copies of its dual repre-
sentation for both the general linear group GL(r, C) and the
quantum group Uq(gί(r,C)). These tensor spaces determine
rational representations of GLr and lfq(g£(r,C)). The central-
izer algebras of these representations are, respectively, the
complex algebra Br

mn^ which is a subalgebra of the Brauer al-
gebra BT

m+n, and the algebra H^n(q) over the field of complex
rational functions with indeterminate q, which is a general-
ization of the Iwahori-Hecke algebra. Upon setting q — 1,
the algebra H^n(q) specializes to Br

mn. The algebra Br

mn

contains as a subalgebra the group algebra C[5m x Sn] of the
product of two symmetric groups, and the algebra H^^q)
contains as a subalgebra the tensor product Hm(q) <g) Hn(q) of
two Iwahori-Hecke algebras. In each centralizer, we find a
distinguished basis and define an analog of conjugacy class.
We then exploit Schur's double centralizer theory to derive
a "Frobenius formula" which we use to compute their irre-
ducible characters in terms of symmetric group characters and
Iwahori-Hecke algebra characters. In the process, we obtain
branching rules that give the decomposition of β^n-modules
into irreducible C[Sm x 5n]-modules and H^ n(ςf)-modules into
irreducible Hm(q) 0 Hn(q)-modules.

0. Introduction.

A sequence of integers λ = (λi, λ2,... , λ t) E 1} is a partition if Xλ > λ2 >
• > λt > 0. The length ^(λ) of λ is the largest i such that λ̂  > 0. If
λi 4- λ2 + + λt = /, then λ is a partition of / which we denote by
λ h /. Let Sf denote the symmetric group on / letters. The irreducible
representations of Sf and its conjugacy classes are indexed by the partitions
λ of /. Frobenius [F] proved a remarkable formula

(0.1) pa(xu... ,Xr) = Σ Xsf(
Xhf

359
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relating the power symmetric function pa labeled by a h /, the value of the
irreducible <S/-character χ^ (a) on an element of the conjugacy class labeled
by α, and the Schur function sλ. This result, referred to as the Probenius
formula, has been used to derive the Murnaghan-Nakayama rule—a com-
pletely combinatorial method of computing symmetric group characters (see
[Sa]).

Schur [Scl, Sc2] gave the Frobenius formula a representation-theoretic
interpretation by showing that it is a consequence of the connection between
Sf and polynomial representations of the general linear group GL(r,C). If
V = Cr is the natural representation of GL(r, C), then Tf = ®fV is both a
GL(r, C)-module and a module for Sf, which acts on T* by place permuta-
tion. Schur proved that the group algebra C[Sf] and the algebra generated
by GX(r,C) on Tf are full centralizers of each other when r > f and that
the Probenius formula represents the matrix trace of Sf x GL(r, C) on Tf.

We extend these results to the mixed tensor representations of GL(r, C).
Let V* be the dual space to V. The mixed tensor space T m ' n = (®mV) ®
(®nV*) is a completely reducible GL(r, C)-module whose irreducible sum-
mands are rational GL(r, C)-modules. Irreducible rational GL(r, C)-modules
are indexed by r-staircases which are sequences of integers

7 = (7i>72, ,Ίr) € Zr such that 7i > 72 > ' * > 7r

The positive integers 71,72, ,7; and the negative integers 7j,7j+i,. ,7 r

of 7 determine partitions

7+ = (7i,72,.. ,7<) and 7- = (-7r,-7r-i,. ,-7j)

We let Φ^'n denote the set of r-staircases 7 which satisfy 7+ h (m — Λ(7))
and 7~ h (n — ft(7)) for some integer ^(7) with 0 < ^(7) < min(m, n).
Stembridge [Ste] proves that the irreducible GL(r, C)-summands of T m ' n

are indexed by the r-staircases in Φ^'n.
The centralizer algebra of the action of GL(r, C) on T m ' n has been de-

scribed by [Koi] and [BCHLLS]. When r>m + n, [BCHLLS] proves that
this centralizer is a semisimple subalgebra B^n of the Brauer algebra #™+n,
which was introduced in [Bra] to describe the centralizer of the orthogo-
nal group O(r,C) on Γm 'n. From the duality between GL(r,C) and Br

mn,
one concludes that the irreducible Br

m ^representations are also indexed by
φm,n rpj^ a ig e |3 r a Br

mn is not a group algebra, but it has a distinguished
basis of diagrams. In a fashion similar to that of [R2] for the Brauer algebra,
we partition this basis into classes on which characters are constant. Since
the elements of B^n are not all invertible, the notion of conjugacy is not
a priori natural, but these classes are an extension of the conjugacy classes
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in Smx Sn. Using the duality between GL(r, C) and Br

mn, we prove the
rational Probenius formula

(0.2) rh

relating a generalization Pζ of the power-symmetric function, the irreducible
Br

m n-character χΊ

βr (ζ) evaluated on the class labeled by £, and the rational
Schur function sΊ. When n = 0, Br

mn becomes C[<Sm] and Equation (0.2)
reduces to (0.1).

The Iwahori-Hecke algebra Hf(q) is the g-deformation of C[Sf] that is the
centralizer of the action of the quantum general linear group Uq(gi(r,C))
on the /-fold tensor product of its natural representation Vq = V ® C(g).
Recently, Ram [Rl] proved the Frobenius formula for Hf(q) which is a q-
extension of (0.1). Kosuda [Kos] gives a two-parameter Iwahori-Hecke al-
gebra H^ (q) which, when r > m + n, is the g-deformation of Br

mn that
is the centralizer of the action of Uq(g£(r, C)) on the mixed tensor space

Tm,n = (0my^ 0 ( g ^ * ) . We describe Hr

mn(q) as an algebra of g-diagrams
based on Kauffman's [Ka] tangle monoid. We identify a basis of ^-diagrams
in Ή.r

m n(q) that specializes when q — 1 to the basis of Hr

m n(g), and we par-
tition this basis into character conjugacy classes also indexed by Φ^'n. We
then give a g-extension of (0.2) that is the Frobenius formula for H^n{q).

The algebra Br

m n contains as a subalgebra the group algebra C[Sm x Sn]
of the product of two symmetric groups. The Kosuda algebra H^n{q) con-
tains as a subalgebra the tensor product of two Iwahori-Hecke algebras
Hm(q) ® Hn(q). We determine the branching rule for writing irreducible
H^ n(q)-modules in terms of irreducible Hπι(q) ® Hn{q)-modules and for
writing irreducible Br

m n-modules in terms of C[5m x <Sn]-modules. Using the
Frobenius formulas we derive a formula (Theorem 7.19) that gives H^^q)-
characters in terms of characters of Hm(q) ® Hn(q) and B^ n-characters in
terms of Sm x <Sn-characters.

This paper is organized as follows. Section 1 presents general results about
centralizer algebras and g-deformations. Section 2 describes the rational rep-
resentations of GL(r,C), the decomposition of T m ' n as a GL(r,C)-module,
and the branching rules for GL(r, C)-modules. In Section 3, the Brauer sub-
algebra is defined, and we give the branching rule for C[5m x Sn] C B^ n.
Section 4 describes the two-parameter Iwahori-Hecke algebra as an algebra
of g-diagrams. In Section 5, we distinguish a basis of Hr

m n(q) and partition
it into character conjugacy classes. Setting q ~ 1 gives the character con-
jugacy classes for B7

mn. In Section 6, we define the quantum general linear
group, and note that, in the r > m + n case, H^ n(q) is the centralizer of the
quantum group for this representation. In Section 7, we prove the Frobenius
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formulas for Br

mn and H^n(q). Using these we derive the character formu-
las, and as a consequence, obtain the branching rules for C[Sm x Sn] C B^ n

<indHm(q)®Hn(q)CHr

mJq).
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1. Preliminaries.

Let C denote the field of complex numbers and UJld(C) denote the algebra
of all d x d matrices with entries in C. We say that an associative C-algebra
A is (split) semisimple if

(l.i) A^

for some finite index set Φ and positive integers d\. Corresponding to each
λ E Φ there is, up to isomorphism, one irreducible A-module. Its dimension
is dλ, and we denote it by Vx. If T is a finite-dimensional A-module, then
the decomposition of T into irreducible j4-modules is

(1.2) T 5* φmxV\

where m λ is a non-negative integer called the multiplicity of Vx.
A set of idempotents {p^ in A is orthogonal Ίΐ PiPj = PjPi = δitjPi for

all i and j (δitj is the Kronecker delta). An idempotent p is minimal if
it cannot be written as a sum p = px + p2 of orthogonal idempotents. A
decomposition 1 = Σ^P; of 1 into minimal orthogonal idempotents is a
partition of unity. If φ : A —> 0λ€Φ^*λ(Q ιs a n isomorphism, then
associated to each λ G Φ is the minimal central idempotent, zx = φ~1(Iλ),
where Jλ is the identity matrix in Mdχ(C). To each minimal idempotent p,
there corresponds exactly one λ E Φ so that pzμ = δμ^χp for all μ E Φ. The
character χφ of the representation φ is the C-linear functional χ<p : A —> C
given by Xψ(a) — Tr(φ(ά)), where Tr denotes the usual matrix trace, i.e.,
the sum of the diagonal entries. The character associated to the irreducible
A-module Vx is denoted χ\ and is called an irreducible character of A.

If T is a finite-dimensional yl-module with associated representation φ :
A —> Endc(T), then the centralizer algebra of A on T, denoted by jBnd^(T)
is the set of linear transformations on T commuting with φ(A), namely
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EndA(T) = {X E Endc(T) | Xφ(a)t = φ{a)Xt for all a E A and t E
T}. If T is an irreducible .A-module of dimension <i, then it follows from
Schur's double centralizer theory that EndA(T) = φ λ G Φ9Jtm λ(C). In partic-
ular, EndA{T) is semisimple, and T decomposes into irreducible EndA{T)-
modules as T ~ 0 λ e Φ dλM

λ, where Mx is an irreducible module for EndA(T)
with dimc M

x = mλ.
We regard T as a bimodule for the algebra EndA{T) 0 A, where the

product on EndA(T) ® A is componentwise, and the action is afforded by
(c 0 α) t — c(a - t) — a(c t) for c E EndA{T) and a E A and extended
linearly to EndA{T) 0 A That this action is well-defined follows from the
fact that the actions of A and EndA(T) on T commute. The decomposition
of T into irreducible EndA (Γ) 0 ^4-bimodules is given by

(1.3) T 2*

(see [R3] for a proof). If Γ is a faithful A-module, then by switching the roles
of A and EndA(T) and comparing dimensions, we have A — EndEndA^τ){T).
That is, A and EndA(T) are full centralizers of each other in Endc(T).

If a E A and c E EndΛ{T), then the trace Tr(c 0 a) = Tr(ca) of the
action of c 0 α on Γ is called the bicharacter of EndA{T) 0 A. From (1.3)
we have

(1.4) Tr(cα) =

Since A and EndA(T) commute, the bicharacter satisfies the trace prop-
erty in each component. That is Tr(cιc2a) — Tr[cγac2) — Tr{c2Cιθ) and
Tr{caιa2) — Tr{aλca2) — Tr{ca2ax) for all c{ E EndA{T) and a{ E A.

If A and B are semisimple algebras, and B is a subalgebra of A, then the
irreducible ^-module Vx is also a I?-module. If {Vμ}μEφ are the irreducible
β-modules, then the decomposition of Vx into irreducible β-modules is given

by

(1.5) V

for some non-negative integers gλ,μ called the multiplicity of Vμ in Vx. Equa-
tion (1.5) is called the branching rule for B C A. If gXμ E {0,1} for all λ
and μ, we say that the branching rule for B C A is multiplicity free. It
is clear that since B C A, their centralizers satisfy EndA{T) C EndB(T),
so if {Mμ|μ G Φ} is the set of irreducible £?nrfβ(T)-modules, then we can
consider the branching rule

(1.6) W
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The following presumably well-known theorem says that the branching rule
for B C A is the same as that for EndA(T) C EndB(T). The proof we
include is due to Ram [R3].

Theorem 1.7. // (1.5) and (1.6) are the branching rules for B C A and
EndΛ(T) C EndB(T) respectively, then gλμ = g'μX for all λ G Φ and μ G Φ.

Proo/. As an EndB(T) ® S-bimodule, we have Γ = Θ μ G φ M μ ® V^. The
algebra EndA{T)®B is a subalgebra of both £?ndΛ(T)®^4 and EndB(T)®B,
so consider the following branching rules

^ ® ^ and

Comparing multiplicities gives <?λμ = g'μλ. D

An important application of this theorem is the following. Let G be
a group and {VijV^ , V/ } be an ordered set of irreducible G-modules.
Then for k = 1, . . . ,/ , the tensor product space T ̂  = Vi ® V2 ® • • ® V} is a
G-module under the diagonal action

(1.8) 5 ( ϋ i ® u 2 ® • * ® Uk) — g - u λ ® g - u 2 ® - - ® g • Uf,

for all p G G and u^ G K Let C^ - EndG{Tk). Then we have C = d C
C2 C C G/. Now let (g,h) EG xG act on T^ = Tf~ι ® F with # acting
diagonally on Γ ^"1 and h acting on the copy of V in the / t h tensor slot.
If we consider G C G x G by the diagonal embedding g *-» (g,g), then the
centralizer of the action of G x G on T ̂  is G/_i ® C = G/_χ. Theorem 1.7
tells us that the branching rule for G/_i C G/ are the same as for G C G x G.
That is,

(1.9) (Vx g

where F Λ and Vπ are irreducible G-modules, Mπ is an irreducible G/-
module, and Mx is an irreducible G/_i-module.

A tower of semisimple algebras is a sequence of semisimple algebras C =
Gi C G2 C C G m C such that d is a subalgebra of G m for all i. The
tower has multiplicity-free branching if the branching rule for each inclusion
Ci C Ci+ι is multiplicity-free. Let {M λ |λ G Φ }̂ denote the set of irreducible
Gi-modules, and suppose dim c (M Λ ) = m λ . Let Ω^ = {t\,... , ί^ λ } be
a basis for M Λ . If π G Φi+i, and λ E Φ t such that M λ appears in the
decomposition of Mπ into Gj-modules with multiplicity 1, then we write
λ < π. The branching rule for Ci C Ci+ι is thus written as

(1.10) Mπ|g;+1 ^ 0 Mλ.
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Considering (1.10), we pick a bijection β : Ω™ —> Uμ<λ Ω™"1. F o r 4 € Ωλ%
an idempotent p t J E C m is defined as follows

if m = 1, and

if m > 1,

where £λ is the minimal central idempotent in Cm associated to λ. This
construction is a generalization of the work of Wenzl [Wenl], who defines
these idempotents in the Iwahori-Hecke algebra.

Proposition 1.12. The decomposition 1 = ^ ^ pt is a partition of

unity.

Proof. The fact that pt is an idempotent is immediate from its definition. To
see that the pt are orthogonal idempotents, observe that

PtPi - z\Pβ{t)ziPβ{t) = z\z>yPβ(t)Pβ(t)i

where t E Ω™ and t E Ω™. If 7 Φ λ, then z λ z 7 — 0. If 7 = λ, then apply the

argument to Pβ(t)Pβ(ϊ) Since dim(CΊ) = 1, we eventually have β{c) £ Mx

and β(t) E MΊ with 7 / λ. Furthermore,

^ = Σ Σ Σ

Σ Σ Σ z^' = Σ
μ<λ t'en™-1 λeΦm ten

D

For q an indeterminate over C, we let C(q) be the field of rational functions

in q with coefficients in C, and let A(q) be a finite-dimensional, semisimple

algebra over C(q). Suppose that {bu... ,6m} is a basis for A(q) having

structure constants f^{q) Then,

(1-13) bibj =

For all but finitely many q0 E C, all the values /£ (ςfo) exist. For such a q0,

let A = A(q0) be the C-algebra spanned by {bu ... , 6m}, with multiplication

given by bfij = Σ^Lχ fϊj{qo)bk- If α(?) ^ -A(?) is written in terms of the basis

as α(g) = Σ ^ ! Ck(q)bk and each rational function Ck(q) E C(g) is defined

at q = ςf0? then we let the element α(ς0) E A be α(ςf0) — Σ^Li ck{qo)bk-
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This gives us a partially-defined, surjective homomorphism from A(q) onto
A. The algebra A(q) is said to be a q-deformation of A. Note that we have
dim^q) A(q) > dim c A. We say that the semisimple C(g)-algebra A(q) and
the semisimple C-algebra A have the same matrix decomposition if

(1.14) A(q) = ff) ffldx (C(q)) and A £

One way of extending character results known for the algebra A to the
algebra A(q) is to use a partition unity of A(q) which specializes when q = q0

to a (well-defined) partition of unity of A. The proof of the following well-
known result is due to [Wen2].

Proposition 1.15. Suppose A(q) is a semisimple C(q)-algebra, and q0 G C
such that A — A(q0) and A(q) have the same matrix decomposition. If
{z\(q)}χeφ are the minimal central idempotents of A{q), then zχ = zχ(q0) is
defined for all λ G Φ , and {zλ}χeΦ is the set of minimal central idempotents
in A.

Proof. If zχ(q0) is undefined then there exists a positive integer 5 such that
zχ(q) = (q—qo)szχ(q) is defined and not zero when q = q0. Then Zχ(q)2 — (q—
qo)2sZχ{q) is zero when q — q0, so zχ(q0) is a central nilpotent element in the
semisimple algebra A which is a contradiction. The proposition follows from
the fact that the two algebras have the same matrix decomposition. D

Theorem 1.16. Let Cx(q) C ••- C Cm(q) be a tower of semisimple C(q)~

algebras with multiplicity-free branching. Suppose q0 G C so that, for 1 <

i < m, Ci(q0) has the same matrix decomposition as Ci(q), and Cι(q0) C

• " Q Cm(q0) has the same branching rules as C1(q) C C Cm(q). Then

there exists a partition of unity 1 = ΣiPiiQ) 2 n Cm(q) which specializes to a

partition of unity 1 = ΣiPiiQo) in C
m.

Proof. Let 1 = ΣiPi{q) be a partition of unity defined as in (1.11). Then each

of the pi (q) is defined as a product of minimal central idempotents for some

Cτ(q) and are thus well defined for q = q0. When q = q0, the construction

of the idempotents Pi{q0) is exactly the same as the construction (1.11) in

Cm. D

2. Tensor Product Representations of GL{r, C).

Let GLr denote the complex general linear group GL(r, C) of all r x r invert-
ible matrices with entries from C. If φ : GLr —> GL{d, C) is a representation
of GL r , then for g G GLr, let g^ and φ(g)ij denote the (i,j)-entry of g and
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φ(g), respectively. If there exist rational functions fij{xι,X2-> 7#r2) such
that φ(g)ij = /ij(5n, 9i25 ? 9rr)-> then we say that φ is a rational representa-
tion of GLr. If each /^ is a polynomial, then φ is a polynomial representation
of GLr. Let i ί be the Cartan subgroup of diagonal matrices in GLr, and
let €i G if* denote the map which takes a matrix to its (i,i)-entry. Each ir-
reducible rational GLr-module can be indexed by its highest weight relative
to i7, which is an integral linear combination 7 ^ + 72e2 + *7rer, whose
coefficients satisfy 71 > 72 > • > 7r. If the representation is polynomial,
then the coefficients satisfy 71 > 72 > > 7r > 0.

A sequence of integers λ = (λi,λ2,... , λt) G Z* is a partition if λx >
λ2 > > λt > 0. The length ί(λ) of λ is the largest i such that X{ >
0. If λx + λ2 + + λt = /? then λ is a partition of / which we denote
by λ h /. Following Stembridge [Ste] we say that a sequence of integers
7 = (71,72,... ,7r) G Z r satisfying 71 > 72 > * > 7r is an r-staircase.
Thus the polynomial GLr-representations are indexed by partitions whose
length is less than or equal to r, and rational representations are indexed
by r-staircases. We will denote by Vx and VΊ the GLr-module indexed by
the partition λ and the r-staircase 7, respectively. The positive integers
7IJ72J ?7» a n d the negative integers 7j,7j+i,... ,7 r of an r-staircase 7
determine partitions 7+ = (71,72,... ,7») a n d 7" = (~7r, ~7r-i, ? -7i)
Conversely, any pair of partitions μ = (//i,... , /î (μ)) and z/ = (z/l5... , ̂ (^))
with ^(/i) -f £(z>) < r determines the r-staircase

(2.1) \μ,v]r =f (μi,A*2, ,/i^),p,0, •.. ,0, ~

where the partitions have been separated by r — ί(μ) + ί{y) zeros.
It is possible to realize all rational GLr-modules as summands of tensor

product representations. Let V = Cr viewed as r x 1 matrices, and let
i>i,i>2, ,vr denote the canonical basis of V. Then GLr acts naturally on
V by matrix multiplication making V a GLr-module. This representation
is polynomial and is known as the "fundamental" representation of GLr.
The dual space V* of V inherits a GLr-module structure given by (g u*)v =
u*(g-1 -v). Let vj, υ j , . . . , υ* denote the dual basis to vu υ2, ., vr in V*. We
identify v* with the lxr matrix having 1 in its ith column and 0 everywhere
else. This is the contravariant representation of GLr, and it is a rational
GLr-representation.

Fix integers m, n > 0 such that m + n > 0. Then the tensor product
T m ' n = (<8>mV) ® (®nV*) becomes a GLr-module under the diagonal ac-
tion (1.8). Moreover, T m ' n is a completely reducible GI/r-module, and its
irreducible summands are rational GLr-modules. When n = 0, its sum-
mands are polynomial (5Lr-modules. To compute the multiplicity of VΊ in
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T m ' n , Stembridge [Ste] defines up-down staircase tableaux. If 7 and p are
r-staircases, then we say that 7 C p if η{ < ρ{ for each i = 1,... , r. An
(m^n)-up-down staircase tableaux of shape 7 is a sequence of r-staircases

(2.2) c C C C 7
( m + n ) - 7

such that for 1 < i < m, the r-staircase 7M is obtained from 7^ ^ by adding
a box, and for m +1 < i < m = n, the r-staircase 7W is obtained from 7^~1)
either by removing a box from j ^ ~ λ ^ or by adding a box to 7^~1) . For
example

is a (4,2)-up-down staircase tableaux of shape 7 = (3,0, —1). Since at step
i with i > m, we either add a box to 7^~1)~ or remove a box from 7^"^ ,
the final staircase 7 will always satisfy 7 + h (m — A;) and 7" h (n — £;) for
some non-negative integer k. Thus we let Φr be the set of all r-staircases,
and we let Φ^'n be the set

(2.3) Φ 7 - { 7 G Φ r I 7+ h (m-ik),7- h (n-fc),0< fc <min(m,n)}.

For 7 E Φ^'n, let m7 denote the number of (ra,n) up-down staircases of
shape 7. Stembridge proves the following theorem which gives the decom-
position of T m ' n into irreducible rational GLr-modules.

Theorem 2.4 [Ste]. The decomposition of T m ' n into irreducible GLr-mo-
dules is

The decomposition of Theorem 2.4 "stabilizes" when r is large. To see
this, let 7 E Φ^'n with 7+ h (m-A;)and7- h (n-Λ). If ^(7+)+£(7")+A: < r,
then Stembridge [Ste] proves that the multiplicity mΊ is given by the formula

m\n\
(2.5)

where fo(7+) and h{η ) are the hook formulas for 7 + and 7 , respectively
(see [Sa]). In particular, if r > m + n, then (2.5) holds for all 7 E Φ^'n.
Moreover, by removing r — (m + ή) zero rows in each 7, we can index the
irreducibles by (m + n)-staircases. That is, we let

(2.6)
def
= {{μ,v]m+n \μ\-(m-h),v\- (n - Λ),0 < k < m i n ( m , n ) } .
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Then for each r > m + n, there is a bijection π : Φ™'n —> Φ m ' n given by
[μ, ϊ/]r H-* [μ, i/]m + n . The set Φ m ' n indexes the irreducibles for all r > m + n,
and the multiplicity of these irreducibles is fixed for all r > m + n. However,
the dimension d i m F 7 depends on r (see [EK] for a dimension formula).

2.1. Schur Functions. Let xr = {α i , ^ , ,#r} be independent, commut-
ing variables. For each partition λ = (λi,... , λ r) define the Schur function
S\{xr) G Z[xr] as

(2.7)

Then the set {sx(xr)\£(X) < r} form a Z-basis of the ring of symmetric
functions Z[xr]

Sr (see [Mac]). Furthermore, Schur [Scl, Sc2] proved that
if g G GLr has eigenvalues eu . . . , e r, then the character of the irreducible
polynomial GrLr-representation corresponding to λ evaluated at g is given
b y 5 λ ( e i , . . . , e r ) .

The irreducible rational representations were classified by Schur [Scl, Sc2].
He showed that they are of the form

(2.8) φ(g) = det{g)sφx(g), for all g E GL r,

for some s G Z and some irreducible polynomial representation <̂ λ of GL r

indexed by the partition partition λ with ί{\) < r. Not all of these repre-
sentations are distinct. In fact, (det)sφx is equivalent to (detyφμ if and only
if λi + 5 = μi + t for each i = 1,2,... , r. We associate to 7 G Φ m ' n the
irreducible GLr-representation 0 7 given by

(2.9) φΊ

 d^f (detr-- 1 ^),

where λ(7) = (λi, , λ r) is the partition of length r defined by λi = 7$ —

Motivated by (2.9), Stembridge [Ste] and King [Ki] defined rational Schur

functions which specialize to the characters of rational GLr-representations.

For each r-staircase 7, the rational Schur function sΊ is given by

(2.10) s7{xr)
 d= {xu... ,xr)

Ίr~ιsλ{Ί){xr) =xΊ

r

r~ιsx{Ί){xr).

It follows immediately that if g G GLr has eigenvalues ei, . . . , eΓ, then the
character of the irreducible rational GLr-module corresponding to the r-
staircase 7 evaluated at g is given by sΊ (βi,... , e r).
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2.2. Branching Rules. Let μ and v be partitions with ί(μ) < r and
t{y) < r. The Littlewood-Richards on coefficient cx

μv is defined by the fol-
lowing expression in rL[xr}

Sr\

(2.11) sμ(xr)sv(xτ) =

In other words, the Littlewood-Richardson coefficients are the structure con-
stants of Z[xr]

Sr with respect to the basis of Schur functions. Moreover, the
Schur functions are the characters of irreducible GLr-modules, so equation
(2.11) is equivalent to the branching rule

of the irreducible GLr x GLr-module Vμ ® Vv into irreducible GLr-modules
Vx. We are considering GLr C GLrx GLr by the diagonal embedding

9 *-> (g,9)>

The following theorem is the rational analog of (2.11) and its corollary
is the rational analog of (2.12). Theorem 2.13 holds in Z[x^]Sr and is due
independently to King [Ki] and Koike [Koij. Notice that part (b) is the
case where η — 0 and r = 0 in (a). Stroomer [Str] gives a different albeit
equivalent description of this product. The definition of [μ, v\r is given in
(2.1).

Theorem 2.13 ([Ki],[Koi]). Let [λ,τ?]r, [τ,π]r G Φ r ; and let X and π be
partitions with £(λ) < r and i(π) < r. Then

(b) Sλ(xr)sπ{xr

1) =

Corollary 2.14. Lei [λ,7j]r, [τ,π]Γ G Φr αncί /eί λ and π fee partitions with
ί(λ) < r and i(π) < r. Then

[μ,l/]r€Φr

where (Vn)* is the dual space of Vπ.
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3. The Brauer Algebras.

We consider symmetric group Sf to be the group of permutations on the set
{1,... , /} and identify the element sτ with the transposition (i i + 1) that
switches i and i + 1. Irreducible <S/-modules are indexed by tS/ -conjugacy
classes which are labeled by partitions λ h /. We denote them by Sλ. These
are the well-known Specht modules (see [Sa]). If Γ = ®fU is an /-fold tensor
product of the vector space ?7, then Sf acts on T by place permutation. That
is, for σ £ Sf we have

where Uι E U for i = 1,... , /. If C/ = V — CΓ, the natural representation for
GLΓ, then it is easy to check that the action of Sf and GLr on T^ commute.
Let εTf(GLr) denote the algebra generated by GLr in Endc(T^).

Theorem 3.2 [Scl, Sc2]. As a C[Sf] ® STf(GLr)-bimodule, the decompo-
sition ofTf into irreducibles is

τf ^ 0 sχ®v\
£(λ)<r

Moreover, if r > f, then C[Sf] and STf(GLr) are full centralizers of each
other in Endc(Tf).

3.1. The Brauer Algebra. An /-diagram is a graph with 2/ vertices and
/ edges such that each vertex is incident to precisely one edge. We view
/-diagrams as having their vertices arranged in 2 rows oΐ m + n points, one
above the other. We denote the set of vertices in the top row of diagram d
by t(d) and those in the bottom row of d by b(d). An edge joining a vertex in
t(d) with a vertex in b(d) is said to be vertical while an edge connecting two
vertices in the same row is said to be horizontal, and an edge that connects
a vertex in t(d) to the vertex immediately below it in b(d) is said to be an
identity edge. For example,

and

are 7-diagrams. We let BXf be the vector space spanned by the /-diagrams
over the field of rational functions C(x) in the indeterminate x. To count the
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number of /-diagrams, observe that there are 2/ — 1 possibilities for joining
the first vertex to another, then 2/ — 3 ways to join an unconnected vertex
to another, and so forth. Thus

(3.3) d imc^βj = ( 2 / - l ) ( 2 / - 3 ) ( 2 / - 5 ) .5 3 l d^f (2/)!!.

We multiply two /-diagrams dι and d2 in the following way. Place dλ

directly above d2 and connect the vertices in b(dι) to the corresponding
vertices in t(d2). The resulting graph consists of / paths whose endpoints
are in t(dι) Ub(d2) along with a certain number c of cycles which are adjacent
to only vertices in the middle row. Let d be the /-diagram whose edges are
the paths in this graph. Then the product of dx and d2 is dλd2 — xcd. For
example the product of the 7-diagrams given above is

= x

The product is extended linearly to B^. In general the product is not com-
mutative, but B^ is an associative algebra whose identity is the diagram with
only identity edges. The structure constants (1.14) for B^ are of the form xc

for non-negative integers c. Thus for each a G C, we define the C-algebra
BJ to be the C span of the /-diagrams with multiplication the same as in
BJ except that each occurrence of x is replaced with a.

Richard Brauer [Bra] first introduced the Brauer algebra to study the
centralizer of the action of the orthogonal group on tensor space. Let Or •=•
O(r, C) denote the orthogonal group, which we view as a group of isometries
with respect to a symmetric, nondegenerate bilinear form δ(.,.) o n F = C
That is,

(3.4) Or = {g e GLr \ b{u, w) = b(g -u,g-w) for a l l u, w G V}.

The action of Or on V is precisely the restriction of the action of GLr on
V. Assume that {v{,... , v*f} C V is the dual basis with respect to &(.,.) so
that b(vi,Vj) — δi,j. The action of GLr on the dual space V* when restricted
to Or is the same as the Or-action if we identify v* with vι using the form
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&(., .)• For this reason, if we let / = m + n, then T m ' n = τ m + n = Tf as a
representation for Or.

Brauer defined a representation φ : Brj —> Endor{Tf) of the Brauer alge-
bra Br

f onto the centralizer of Or on Tf (see [Bra] or [HW1]). The homo-
morphism can be described explicitly on /-diagrams. Let d be an /-diagram,
and define φ(d) to be the matrix whose (ϊ^-entry for i — (ii, i2, .. , if) and
3_ — {jiihi jf) is determined by the following rules:
(1) Label the vertices in t(d) from left to right with υiχ, υi2,... , υif and the

vertices in b(d) from left to right with υ^, v*2,... , v* .

(2) The (i, j)-entry of φ(d) is the product of the values of the bilinear form
b(Uj w) over all the edges e of eZ, where u and w are the labels on the
vertices of e.

Weyl [Wey] showed that φ is an isomorphism when [r/2\ > /, and Brown
[Brol, Bro2] proved that φ is an isomorphism whenever r > f. In particu-
lar, Brf is semisimple whenever r G Z and r > /.

If λ = (λi, λ2,. . , λί) is a partition, then we define the conjugate partition
λ; = (λi, λ2,... , λ't) by λj = Cardίjίlλ^ > %}. Let fΓ/ (Or) denote the algebra
generated by Or in Endc(T^). Weyl [Wey] proves that the irreducible Or-
modules are indexed by partitions μ with μi + μ2 < r.

Theorem 3.5 [Wey]. The decomposition ofT^ as a Brf®STf{Or)-bimodule
is

L//2J
(3.6) Tf ^

where Mμ is the irreducible Brj-module and Vμ is the irreducible Or-module
corresponding to μ. Moreover, if r > f, then Br

f and ετf(Or) are full cen-
tralizer s of each other in Endc{T^).

In 1987, Hanlon and Wales [HW1] conjectured that Ba

f is semisimple if
a is not an integer. Wenzl [Wen2] proved in 1988 that Bf is semisimple
except for a finite number of a G Z with — f + 1 < a < f — 1. It remains an
open question to determine exactly which integral values of a cause BJ to
fail to be semisimple. Hanlon and Wales [HW2] give a tower construction
of the radical of B^ in low-rank cases.

3.2. The Brauer Subalgebra B^n. Since Tm>n ^ T m + n as Or-modules,
we have EndGLr{Tm'n) C EndOr{

τm'n) τ h u s > w e should find a copy of
the centralizer algebra EndGLr(Trn>n) inside the Brauer algebra Br

m+n. This
observation motivated [BCHLLS] to define the subalgebra Br

m^n of Br

m+n



374 TOM HALVERSON

which maps onto EndGLr(Tm>n). Koike [Koi] independently described the
centralizer of GLr on T m ? n in different terms.

An (m^n)-diagram is an (ra + n)-diagram with a vertical wall between the
rath and (ra + l)st vertices such that vertical edges never cross the wall and
horizontal edges always begin and end on opposite sides of the wall. We let
tf (d) and tf(d) denote the ith. and j t h vertices in t(d) on the right and left
side of the wall, respectively, and bf (d) and bf (d) denote the zth and jth
vertices in b(d) on the right and left side of the wall respectively. We num-
ber the vertices on the left side of the wall from left to right with 1,... , ra
and those on the right side of the wall from left to right with 1,... , n. The
following is an example of a (6,5)-diagram:

Let ϊ>m,n be the set of all (ra,n)-diagrams, and let Bx

mn be the (C(α )-span
of P m , n . It is not hard to check that B^ n is closed under the multiplication
of (ra, n)-diagrams and is thus a subalgebra of B^n+n. If a E C, then B^ n is
the subalgebra of the C-algebra B^+n.

The dimension of Bx

mn is obtained by counting the diagrams with k hori-
zontal edges in each row and then summing over k. Thus,

(3.7)

fe! (m-k)\{n-k)\
min(m,n) / / \ / \ \ 2

I _ V̂  (ίm\ in

k=0 \

min(m,n) / \ /
" J m\ I n

= mini > 7

= mini

The fourth equality is proved by counting the occurrence of the monomial
xn in the product (1 + x ) m + n = (1 + x)m{l + x)n. Another way of counting
the diagrams is to flip the part of the (ra, n)-diagram d that is to the right
of the wall over its horizontal axis without disconnecting any edges. Then
each vertex of t(d) is connected to a vertex in b(d). Moreover, any (ra + n)-
diagram having no horizontal edges can be "flipped" in this way to obtain
an (777,, n)-diagram. There are clearly (ra + n)! such diagrams.
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There is a natural embedding of the group algebra C[Sm x Sn] in

where the simple transpositions
diagrams

Si =

nG Sm and s* G Sn correspond to the

In general, the permutation π G Sm x Sn is associated to the (ra, n)-diagram
dπ with the property that bf(dπ) is connected to t^(dπ) and bf(dπ) is
connected to t^(dπ). Notice that it is exactly the diagrams in L
no horizontal edges that correspond to Smx Sn.

For 1 < i < m and 1 < j < n let e^ denote the diagram

with

• 4

• 4 > (
\ 4

I K

—

>

I

4

4 1 4 > K

1 4

\ 4

and let e = em>1. It is not hard to check (see [Hal]) that the set of diagrams
{sus) I 1 < i < m - 1,1 < j < n - 1} U {e} generates all of Bx

mn. In
Section 4, we give a presentation of Br

mn on these generators subject to a
set of relations.

If we restrict the representation φ : Br

mJtn —> EndOr(Tm'n) to the sub-
algebra Br

mn, we get a representation of Br

mn on T m ' n . Under this repre-
sentation, the diagrams of Sm x Sn act on simple tensors of T m ' n by place
permutation. That is if (σ,r) e Smx Sn, t E ®mV, and u E ®nF*, then
(σ,τ) ί®ιt = σ t ® σ ® ι t where σ ® t and τ ® u are given by (3.2) The
simple tensors v = v«Λ ® i?ίo ® ® i>?- ® υ* ® t>* ® • ® f* form a basis of
T m ' n , and the action of the diagram e on v_ is

(3.8) e-v = v*2

The transformation y_ »-> e u is called a contraction map. Koike [Koi]
proves that the action of the group Sm x Sn together with the contraction
map generate all of EndGLr(Tm>n). Using this fact, [BCHLLS] obtains the
following theorem. We let ετrn,n{GLr) denote the algebra generated by GLr

in
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T h e o r e m 3.9 [BCHLLS]. The map φ : Br

mn —> Endc{Tm^) maps
Br

m n onto EndGLr(Tm'n) for all r and is an isomorphism when r > m + n.
Thus, when r > m+n, the algebras ετ^,^(GLr) and B^^ are full centralίzers
of each other in Endc(Tm>n) and Br

mn is semisimple.

Since Br

m^n maps onto EndGLr(Tm>n) for all r, the set Φ™'n indexes irre-
ducible Br

m n-modules, and GLr and B^ n are in Schur-Weyl duality on T m ' n .
That is

T h e o r e m 3.10. The decomposition of T m ' n as a Br

mn ® 8Tm,n(GLr)-

bimodule is

where MΊ is the irreducible Br

mn-module labeled by 7 and d i m M 7 = ra7.

It follows that the decomposition of T m ' n as a module for Br

mn is given by

(3.11) Tm 'n ^ 0 dΊM
Ί

where dΊ — d i m F 7 , and d i m M 7 — mΊ (see (2.5)). If r > m + n, then
T m ' n is a faithful S^-module, the set {M 7 | 7 e Φ^'n} is a complete set of
irreducible Br

m n-modules, and

(3-12) β;,n= 0 9V(Q,

is the matrix decomposition of Br

mn. The modules M 7 are explicitly con-
structed in [BCHLLS]. When r > m + n, the irreducible Br

m n-modules
can be denoted by (m + n)-staircases in Φ m ' n . Thus for 7 G Φ m ' n , we let
MΊ(x) = M 7 <g> C(a;). Then the set {M7(x) | 7 G Φ m ' n } is a complete set of
irreducible # ^ n-modules (see [BCHLLS]), and

(3.13) B^n S

is the matrix decomposition of B^ n . In particular, when r > m + n, β ^ n

and β^ n have the same matrix decomposition.
By Theorem 1.7, the branching rule for C[Sm x <Sn] C Br

mn is the same as
for GLr C GL r x GL r , given in Corollary 2.14(b). As a corollary of Theorem
7.19, we will extend the branching rules to C[Sm x Sn] C β^

T h e o r e m 3.14. Let 7 G Φ m ' n . TΛen
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If λ and π are partitions, then we say that λ/π = D if π C λ and |λ| — |π | —
1. That is, the diagram of π is obtained from the diagram of λ by deleting one
box in such a way that π remains a partition. We say that [μ, ι/]r/[a, β]r = D
if one of the following hold:
(a) μ/a = D and v — β, or

(b) μ = a and βjv — D.
In other words, [μ, v]r/[a,β]r = D if the diagram of [α,/3]r is obtained from
the diagram of [μ, v\r either (a) by deleting a box from μ and fixing v or (b)
by adding a box to v and fixing μ.

Theorem 3.16. Let [μ, v\r G Φ m ' n . Then

[μ,v}r/\<*,β}r = D

and

[ α , / 3 ] r / [ μ , i / ] r = G

Proo/. By (1.9), the branching rules for #™_ l n C β^ n are the same as those
for the diagonal embedding GLr C GLr x GL r on the tensor product space
Tm~ι'n® V. Since V is the natural representation for GLr, its highest weight
is €i, and we denote it by F^ 1 ' 0 ^ , where ωι = (1), the unique partition of 1.
By Corollary 2.14(a), we have

Now c^0 — C0λ = 1 and cx

μv — 0 unless μ C λ and ẑ  C λ (see [Sa]), so we
must have δ = ζ = 0. This, in turn, forces p = a, and so c£p = 1, 0 = ι/,
and c^ = 1. The multiplicity of V[μ^r is then Σ κ , e

c ^ C c L Moreover,
ĉ J = 0 unless e = 0 and K = CUX or e = ωλ and K = 0. In the first case, the
multiplicity of V^μ^r becomes c^vc^Ui, so we must have β ~ v and a C μ
with |μ| = |α | = 1. In the second case, the multiplicity becomes c^^c^,
forcing a = μ and z/ C /5 with |/3| = |z/| = 1. Thus the branching rule is
proved for Br

m_ln C β^> n. For BT

m^_x C β^ n , consider the multiplicity of
V^."]- in y^ '^" ® F t 0 ^ 1 ^ and proceed similarly. D
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4. The Two-Parameter Iwahori-Hecke Algebras.

Let q be an indeterminate, and let C(q) denote the field of rational functions.
The Iwahori-Hecke algebra (of type ^4), denoted Hf(q), is the C(q) -algebra
generated by l ,#i , . . . ,#/-i subject to the relations
(Bl) gi9j =gjgi, if \i - j\ > 1,

(B2) ft+i0i0i+i = 5i5t+iΛ,

(IH) ft

2 = ( g - l ) f t + g.
Upon specializing g = 1, relation (IH) becomes the Coxeter relation g\ — 1

for the symmetric group, and we get Hf(l) = C[«S/]. The irreducible repre-
sentations of Hf(q) are indexed by partitions λ h ra and denoted S*. The
algebras Hf(q) and C[<S/] are semisimple and have the same decompositions
into matrix algebras over C(q) and C, respectively.

Let r G Z+U {0}, and let [rjq be the Gauss polynomial given by {0}q = 0,

[1], = 1, and

(4-1)

Define H^ (q) to be the C(q) -algebra generated by

subject to the relations

(Bl) ftA = gj9i, if |t - j\ > 1 (Bl*) </^; = g*g*, if |t - j\ > 1

(B2) gi+igigi+i = gigi+igi (B2*) g*i+1g*g*+1 = g*g*+1g*

(IH) P i

2 = ( 9 - 1) Λ + 9 (IH*) gf = (q- l)g* + q

(HH) 9 i f f ; = ff*5i

(Kl) egt = g{e, for 1 < i < m - 2 (KΓ) e ^ = g*e, for 2 < j < n - 1

(K2) egm^e = qre (K2*) e5l*e = 9

r e

(K3) e2 = [r]fe

(K4) 9m-ιgΓιeg^_xgle = eg^_xg\e = egm_xgl^eg^gl.

If m = 0 or n = 0, then we omit the generator e and its corresponding
relations.

If q0 G C\ {0}, then let [r] ί β

 d= ςίo7"-1 + go

Γ-2 + + go + l. There exists a
basis for H^n(q) consisting of monomials in the generators (see Proposition
5.4) whose structure constants are well-defined for q0 G C \ {0}, so we can
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define the C-algebra H^^n(qo) Multiplying relations (IH) and (IH*) by g~ι

and g]~ι, respectively, gives

(4.2) g-1 = q-igi + (q-i-l) and g*~ι = q-λg) + (q'1 - 1) .

The subalgebra of H^n{q) generated by l , ρ l 5 . . . ,gm-ι satisfies the Iwa-
hori-Hecke algebra relations (Bl), (B2), and (IH) and is isomorphic to Hm(q).
The subalgebra of Hτ

m n(q) generated by 1, <?i,... ,<£_i satisfies the Iwahori-
Hecke algebra relations (Bl*), (B2*), and (IH*) and is isomorphic to Hn(q).
Moreover, g{ commutes with #*, so we have the embedding

(4-3) Hm(q)®Hn(q)CHr

mJq).

In Corollary 7.23 we give the branching rule for this containment.
Kosuda [Kos] originally presented the H^ (q) on the set of genera-

tors 1,T1?... ,Tm_!, J5,T;, . . . ,Γn*_l5 where T{ = q'^2gu T* = q~1/2g*,
and E = qι/2^ι~r^e. With these identifications, the relations of H^n(q)
become Kosuda's relations with parameter g1/2, so the two presentations
are equivalent. The algebra H^^q) has been generalized by Leduc [Le]
to a two-parameter algebra Am,n(z,q). Specializing x = qr in Am,n(z,q)
gives Hr

m n(q). Many of the results of this paper carry over immediately to
Am,n(z,q).

For 7 G Φ^' n, let MΊ

q = MΊ ® C(q), where MΊ is the irreducible Br

mn-
module of Section 3. For r > m + n, Kosuda defines an action of H^n(q)
on M^ that is a "(/-extension" of the action of Br

mn on M 7 in the sense that
when q — 1 we get the action of Br

mn on M 7 . The following theorem is due
to Kosuda.

Theorem 4.4 [Kos].

(a) dimfΓ^ n (g)<(m + n)L

(b) Ifr>m + n, then άimH^^q) = (m + n)!, and {M7 | 7 G Φ^'n} is a
complete set of irreducible H^^q)-modules. In particular, H^n(q) is
semisimple and its decomposition into full matrix algebras is given by

Comparing the matrix decompositions of H^^q) and Br

mn (see (3.12))
gives the following corollary.

Corollary 4.5. If r > m + n, then the C-algebras H^^ΐ) and # ^ n are

isomorphic.

L.H. Kauffman [Ka] gives a diagrammatic context for the Birman-Wenzl
algebra BWf(z, q)—which is a g-deformation of the Brauer algebra Br

f when
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z = qr (see [Wen3]). We use his techniques to give a description of H^^q)
in terms of g-diagrams.

An f-braid is viewed as two rows of / vertices, one above the other, and
/ strands connecting each vertex in the top row with a vertex in the bottom
row in such a way that each vertex is incident to precisely one strand. Strands
cross over and under each other in three-space as they pass from the top row
to the bottom row but are not allowed to cross themselves. An (m, n)-braid
is an (m + n)-braid with a wall between the mth and (m + l)st vertices such
that strands never cross the wall. We number the vertices from left to right
in each row with 1,... , m left of the wall and 1,... , n right of the wall. For
example

ΓV
is a (6,6)-braid.

The Reidemeister moves of types II and III are (see [Ka] for details):

II.

III. and

We can apply these "moves" to braids by isolating one of these pictures
in an open disk in a braid diagram and applying the relations. When we
apply these moves we always keep the strands connected to the vertices
and keep the vertices fixed. The Reidemeister moves give an equivalence
relation among braids known as regular isotopy. We take braids to be their
equivalence classes up to regular isotopy and multiply braids bι and b2 using
the concatenation product given by identifying the top row of b2 with the
bottom row of bλ and then re-scaling the result to obtain a new braid bχb2.
The concatenation product is associative and makes the set of all /-braids
Bf a group called the braid group. The set of all (m, n)-braids with this
product generates the subgroup Bm x Bn of Bm+n.
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For 1 < i < m— 1 and 1 < j < n — 1, let σ̂  and σ* denote the (771, n)-braids
given by

It follows from the second Reidemeister move that

A

4 >

4 >

J J + 1

V 1A ., 4 l

J J + 1
•

•
ί V
..A • 4

Moreover, it is well-known that the braid group Bm x Bn is generated by
1, σ 1 ? . . . , σm_ l5 σj5,... , CF^-I subject to the relations

(Bl) σiσ3 = σάσu if \i - j \ > 1, (Bl*)

(B2) σi+1σiσi+1 = σiσi+1σu (B2*)

if | i -

The braid relations (B2) and (B2*) follow from the third Reidemeister move.
To define a ^-extension of Br

mn we need to include horizontal edges. Thus,
we follow [Ka] and say that an f-tangle consists of two rows of / vertices one
above the other, and / strands connecting each vertex with another in such a
way that each vertex is incident to precisely one strand. We no longer insist
that strands travel from top to bottom, but again, strands cross over and
under each other as they pass from one vertex to another. Vertical strands
are those that travel from top to bottom, and horizontal strands are those
that connect vertices in the same row. An (m,n) -tangle is an (m-fn)-tangle
with a wall between the rath and (ra -f l)st vertices such that horizontal
strands never cross the wall and vertical strands always connect vertices on
opposite sides of the wall. Since the concatenation product of tangles with
horizontal strands can create cycles and self-crossing edges, we allow a tangle
to contain arbitrarily many closed cycles and curls. For example,
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is a (6,6)-tangle. We take tangles to be their equivalence classes up to regular
isotopy. The set of all /-tangles is denoted %f and the set of all (772, n)-tangles
is denoted ΐ m , n . Tangles with horizontal edges are not invertible under the
concatenation product, but the concatenation product makes %f and Xm>n

into monoids which we call the tangle monoids.

Let h denote the following (ra, n)-tangle which Kauffman refers to as a
hook:

" T T_|_T T "

1 x~h 1 „

The braid monoid M m n is the monoid generated in Xm,n by

For ra + n > 3, the braid monoid M m n does not contain all (ra,n)-tangles
(see [Ka]), and so when ra + n > 3, we have the proper containments

(4.6) BmxBnC M m , n C Xm,n.

We associate to each of these monoids an algebra of diagrams as follows.

Let r G Z+U{0}, and let *4Xm,n denote the free associative algebra generated

by Tm,n over C(q) subject to the relations:

(Ql) σC^q-'σi + iq^

(Q2) (a) /ισm_i/ι = gr^ι,

(b) hσ'^h = q-if

(Q3) Λ2 = [r]βΛ.

-lYid, (Ql*) σ^1 = q-'σ* + (q'1 - l)id,

(Q2*) (a) ftαj/i = gr/ι,

(b) /la*"1/! = q~ιh,

In terms of tangles, these relations give the tangle identities given in Figure
4.7.
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(a)

Figure 4.7.

X--
IX
X I I = ? r

I X

XI

Tangle

X *

I *X,'

Identities.

r -.,

(b)

11

IX
Xll
IX

XI

(Q3) rt» = ,

X
rt» = ,-'
X

Like the Reidemeister moves, the tangle identities relate diagrams which
differ in small open disks by the given relation and are the same outside the
disk. Identity (Ql) allows us to change over-crossings to under-crossings.
The identities of (Q2) allow us to remove curls. We will say that the curls
in (Q2)(a) have positive orientation and are removed with a penalty of qr.
Those in (Q2)(b) have negative orientation and are removed with a penalty
of q~ι. The unknotted simple loop in (Q3) is removed with a penalty of [r] .

We refer to the images of the tangles in A%m,n as q-diagrams, or some-
times, (m,n;q)-diagrams. Let ΛMmin denote the restriction of Λ%m^n to
tangles in the braid monoid M m n , and let Λ(Bm x Bn) denote the restric-
tion of A%m,n to the braid group.

Theorem 4.8. There exists a surjectiυe homomorphism π : H^ (q) —>
AMm,n given by π(^) = σ{, π(g*) = σ*, and π(e) = h.

Proof. Let F m n denote the free associative C(q)-algebra generated by
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and define a homomorphism π : F m ? n —> AMm^n by π(p») = σ^ π(g*) — σ*,
and π(e) = /ι. Let Im%n be the ideal of Fm,n generated by the ίf^ n(g)-
relations. Then the theorem is proved by showing that / m > n is in the kernel
of 7Γ, or, equivalently, that σ i ? σ̂  , and /ι satisfy the H^n{q) relations. The
commutativity relations (Bl), (Bl*), (HH), (Kl), and (Kl*) are topological
moves in Ί m ? n that trivially preserve the configuration of the crossings. The
braid relations (B2), and (B2*) follow from the third Reidemeister move.
Relations (IH) and (IH*) are equivalent to (Qΐ). Relations (K2) and (K2*)
are equivalent to (Q2) and (Q2*), respectively, and relation (K3) is equivalent
to (Q3). One verifies that (K4) is satisfied by multiplying g-diagrams and
using the second Reidemeister move. We show the first equality in (K4)
here:

.9̂ -1.9?= X I X T - K T = / ι

D

By specializing q = 1, we show that the homomorphism in Theorem 4.8
is an isomorphism. If we let q — 1 in the tangle identities of Figure 4.7,
then (Ql) identifies each braid generator with its inverse, (Q2) removes
curls, and (Q3) becomes h2 = rh. Kauffman [Ka] proves that modulo these
relations, the tangles become Brauer diagrams (i.e., (m + n)-diagrams) and
the multiplication is exactly the multiplication given in Section 3. It follows
that upon setting q — 1, we have AMm,n = Br

mn, as C-algebras, and we
conclude that

(4.9) - dimc^) AMm,n > dim c B
r

mn = (m + n)!

Since, dimq^ Hr

mn(q) < (m + n)\ and H^n(q) maps onto AM^^ we have
H^n(q) = ^4.Mm5n. For the remainder of this work, we associate the gener-
ators of Ή.r

m n(q) with their ςr-diagrams, and we refer to the diagrams of g^
g*j, and e as generator diagrams.

Recall that Vm^n is the set of (m, n)-diagrams and that Vm,n is a basis
of β j n n . Since i7^ n (g) is a g-deformation of β ^ n , we have the following
theorems:
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Theorem 4.10. For all r e ΊΛ U {0}, H^n{l) = Br

mn as C-algebras. In
particular, dimc(q){H^n(q)) = (m + n)l

Theorem 4.11. Any set D of q-diagrams which specialize when q = 1 to

£>m>n is a basis of Hr

mn(q).

Proof. Since D specializes when q = 1 to Vm^n, which is a basis for H^ n ( l ) ,

the set D is C(g)-independent. Since \D\ — (ra + n)\ — dimC(9) H^ (q), the

set D spans H^n(q). D

In (4.6) we remarked that not all (m,n)-tangles are in the monoid M m n ,
and thus not all (m, n; g)-diagrams are in H^ n{q). To identify the g-diagrams
in H^^niq), we say that a g-diagram d is in standard form if
(1) no strand of d crosses itself,

(2) no two strands of d cross more than once, and

(3) d contains no cycles.
Notice that (2) precludes horizontal strands in t(d) from crossing horizon-

tal strands in b(d).

Theorem 4.12. Any q-diagram d in standard form can be written as a

product of generator diagrams.

Proof. First we assume that d has only vertical strands (i.e., d is a braid),
and we induct on the number of crossings in d. If d has 0 crossings, then
d — 1 and the theorem holds. Otherwise, if d has a crossing on the left
side of the wall, then there exist two adjacent vertices, say i and i + 1, such
that the strands adjacent to them cross before, moving top to bottom, they
cross any other strands. We can write d — g\d' where d! has only vertical
strands and has one fewer crossing than cί, and ί E {1, — 1}. If d does not
have crossings left of the wall, then it must have at least one crossing right
of the wall, and the same argument holds with g* in place of gim The result
follows by induction.

As in Section 3, let tf(d) (respectively, bf(d)) denote the ith vertex in
the top (bottom) row of d to the left of the wall, and let tf(d) (respectively,
bf(d)) denote the jth vertex in the top (bottom) row of d to the right of the
wall. If d has horizontal strands, then d can be written as d = Gid'G^ where
Gi contains only vertical strands and d' has horizontal strands that connect
tm(dr) to tf(d') and b^(d) to 6f (d) and which do not cross any other strands
in d!. To see this, consider the example



386 TOM HALVERSON

If we order the horizontal strands of rf from top to bottom as they appear
on the page, then it is the first and the last strand in rf that become the
distinguished strands in d!.

We now can write rf' = erf", where rf" has identity strands connecting
i^(rf) with 6 (̂rf) and if (rf) with 6f (rf). Continuing this way, we remove all
horizontal strands from rf, and the theorem follows from above. D

The product of two ρ-diagrams in standard form may not be in standard
form. However, the tangle identities of Figure 4.7 allow us to "standardize"
these diagrams inductively. If a diagram has edges that cross more than once,
then we can use the third Reidemeister move to isolate a double crossing in a
small disk. Applying either (Ql) or the second Reidemeister move removes
the double crossing without introducing any new crossings. Once we have
removed all double crossings in a diagram, we then can remove all simple
curls with (Q2) and all simple cycles with (Q3) without introducing any new
crossings. In this way, we write the diagram as a C(q) -linear combination of
standard diagrams.

Proposition 4.13. Any element of H^^q) can be written as a C(q)-linear
sum of q-diagrams in standard form.

5. Character Classes.

Recall that tf(d) (respectively, bf(d)) denotes the ith vertex in the top (bot-
tom) row of rf to the left of the wall and tf(d) (respectively, bf(d)) denotes
the jth vertex in the top (bottom) row of rf to the right of the wall. We
define the cycle type of a diagram d 6 Vm^n by traversing the diagram rf as
follows:
(1) Start with vertex £f (rf), if it exists; otherwise, start with vertex 6f (rf).

(2) Follow the edge adjacent to this vertex. Upon reaching the opposite
end of an edge, jump to the vertex directly above it if we are in b(d)
and to the vertex directly below it if we are in t(rf), and continue by
following the edge adjacent to that vertex.
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(3) Returning to the starting vertex completes a cycle in d. If not all of
the edges of d have been traversed, we go to the first vertex in tL(d)
or in bR(d) that has not been visited and repeat the process.

In this way, we decompose d into disjoint cycles. For example, the diagram

1 2 3 4 5 6 V 2' 3' 4' 5' 6'

(5.1)

has 4 disjoint cycles. The first is on vertices 1,1', 2', 3, the second on vertices
2,4,5 the third on vertices 6,4', 3', and the fourth on vertices 5', 6'.

For each cycle c in d, let type(c) denote the number of vertical edges in
c on the left side of the wall minus the number of vertical edges in c on the
right side of the wall. The integer type(c) is the cycle type of c, and we say
that c is a type(c)-cγcle. It is always possible to list the cycles of d in such
a way, c l 7 c 2 , . . . ,c s, that

(5.2) t y p e { c λ ) > t y p e ( c 2 ) > • • > t y p e ( c s ) ,

where s is the number of cycles in d. In other words, the sequence (5.2) is
an s-staircase. We associate with d the (m + n)-staircase ζ(d) obtained from
(5.2) by inserting m + n — s zeros into the sequence between the positive
values and the negative values. The (m + n)-staircase ζ(d) is called the cycle
type of d. The ordering on the cycles of d is not unique, but the (ra + n)-
staircase ζ(d) is uniquely defined. If d G Smx <Sn, then {ζ{d)+,ζ(d)~) is
exactly its cycle type when viewed as a pair of permutations. In example
(5.1), the diagram d has ζ(d) = (3,09, —1, —2), since m — n — 6.

Zero cycles contain the same number of vertices on each side of the wall,
and vertical edges in non-zero cycles do not get counted in the type of d
only if they are paired with a vertical edge on the opposite side of the wall.
Thus, there exists an integer h(d) satisfying 1 < h(d) < min(m,n) and

)+ h (m - h(d)) and ζ(d)~ h (n - h(d)). In our example h(d) = 2,

To each d G Vm^n we associate the g-diagram d^ by q-traυersing d as
follows:
(1) Order the cycles of d by type as in (5.2) and traverse the cycles in this

order.

(2) Traverse an individual cycle in d^ just as we would traverse the cycle
in d, only now, whenever we cross an edge, we go under it if that
edge has already been traversed, and over it if that edge has not been
traversed.
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In this way, d^ is in standard form, and the cycles of d^ are layered from
top to bottom according to their type. For our example (5.1), we have

6 1' 2' 3' 4' 5' 6'

Remark 5.3. I would like to thank Arun Ram for suggesting that I use

such a method of drawing the basis of Hl^ (q).

It is clear from this construction that d^ specializes when q = 1 to cZ, and

it follows from Theorem 4.11 that

Proposition 5.4. The set Vq

mn

 d= {d(q) | d e Vmn} is a C(q)-basis for

We consider

(5.5) Hr

Ke(q) ® Hr

m_k,n_t(q) C Hr

mJq)

in the following way. If dx is a (&, ί\ g)-diagram and d2 is an (m — k,n — i\ q)-
diagram, then dλ ® d2 is the (ra, n; </)-diagram obtained by placing, in order,
the first k dots of G?I, the first m — k dots of d2, the wall, the last i dots of
rfl5 and the last n — ί dots of d2. We then attach each strand to its original
vertex while placing the strands of d\ on top of the strands of d2. Then
H££(q) commutes with Hζn_kn_ί{q) inside of Hτ

mtn(q), so the tensor product
is well defined.

We say that a diagram c G £>m,n is a cycle diagram if c consists of a single
cycle and has the property that when we traverse it, we visit the columns
on the left side of the wall in increasing order, and we visit the columns on
the right side of the wall in increasing order. If c is a cycle diagram in 2?m>n,
then we say that c^ is a cycle diagram in Ί)^ . For example,

1 \

For each k > 0, we let dk denote the cycle in Br

k0 = Sk given by dk =

sfc_1sfc_2 si, and for k < 0, we let dk denote the cycle in BQ _k given by

dk = SJSJ "'" s-fc-i They are drawn as

(5.6) dk = \\Λ if k > 0, and dfc = ΛV / if ft < 0
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When k = 0, we let dk = 0. When k > 0, we lift dk to the ρ-diagram

d k = 9k-i9k-2 •••Qι € Hk(q), and when A; < 0, we lift <4 to the ^-diagram

49) = gΓ'gΓ1 --g-k-Γ1 e #-*(?)• Thus,

(5.7) dίβ) = \ Λ \ if A > 0, and d[q) = I Ύ^Lf if A; < 0.
Λ V\ I I // K

The inverses are required when k < 0, since we traverse the cycle diagram

starting with 6f (dk). Recall that e is the diagram in B\ x and in H[ x given

by

(5.8) e =

and let eΘ / ι = e ® e ® ® e with /ι-factors. For C G Φ m ' n , let Λ(C) 6 Z
so that ζ + h (m — Λ-(C)) and ζ~ h (n — /ι(C)), and assume that the lengths
of the positive and negative parts of ζ are ̂ (( + ) = i and i(ζ~) = j . Then
dς+, dζ-, dςQ+, and d ^ are the diagrams given by

(5.9) dζ+ = dζl ® dC2 ® ® o?Ct. and dc- = dζr_j ® ® ίίCr_1 ® dCr,

,/(«) _ ,/(«) <> AQ) /ov /CK ̂ (ί) a n r l M _ ^(ί) 6?N . . . (9) rf(ti (9) rfWCίs+ — Us 09 Us 09 ' ' ' 09 Cίζ. dJiQ. Us- — aζr- • *9 vS) Cr-i ζr '

and dζ G β^^ and d^ G ϋΓ^ n(g) are the diagrams given by

(5.10) dc = dζ+ ® eΘ / ι ( c ) ® dζ- 4 9 ) = 4 + ® e

For example, if ( = (2,2,08, (-1) 2 ,-3) G Φ 6 ' 7 , then

Elements a and b of H^^q) (resp. β^ n ) are said to be conjugate, written
a ~ b, if there exists /ι G Hm(q) ® Hn(q) (resp. h e Smx Sn) such that
hαh"1 = 6 . If a ~ b and tr is any trace on H^n(q) (resp. S^ jn), then by the
trace property, ίr(α) = tr(6).

Proposition 5.11.
(a) Ifd G £>m,n ; Λ̂en rf ~ Ci®c2® ®cs αndd 9 ~ 4 9 ) ® 4 g ) ® -®c[q\ where

Ci,c 2 , . . . ,c s are the cycles of d ordered so that type(cχ) > type(c2) >
••• >type{cs).
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(b) //d is any (m — 1,n — 1;q)-diagram, then d®e~e®d.

Proof. For part (a), define π = (τri,π2) E Sm x <Sn and h — hi (& h2 E
Hm(q) ® Hn(q) as follows: if in g-traversing c£9 as above, the ith column
visited on the left side of the wall is j , then let ττι(j) = i and connect the
j t h vertex in the bottom row of hi to the ith vertex in the top row of hi
always passing under any edges that are already drawn. If the ith column
visited on the right side of the wall is j , then let π 2(j) = i and connect the
jth vertex in the bottom row of h2 to the ith vertex in the top row of h2

always passing under any edges that are already drawn. Then hd^h~ι is
equal to the tensor product of the cycles of d^q\ For our example (5.1) we
have

Notice that layering consecutive edges of h just as we did in d^q) allows
us to pull the first cycle of d^ to the front over the top of the other cycles,
then pull the second cycle out from between the first and the third, etc.
That πdπ~ι is the tensor product of its cycles follows from ignoring the over
and under-crossings. For part (b), let h — gιg2 ffm-iS*"1^"2 ' ' ' 9n-i>
and then h(d <S) e)h~ι — e 0 d. The reader should note that in general
dx®d2~d2® dx holds in Br

mn but not in H^n(q). D

Let
def

z(d) = (number of 0-cycles in d).

Since 0-cycles do not contribute to ζ(d) and since 0-cycles contain the same
number of vertices on each side of the wall, we have 0 < z(d) < h(d). Let

v(d) ά= (number of vertical edges of d which do not get counted in

w(d) = (number of cycles c in d with type(c) < 0 that have at least one

horizontal edge),

u(d) ά~ [h(d)-υ(d)-z{d)-w{d)]r-w(d),

and define functions ξ : Vm^n —> C(x) and ξq : Vm^n —> C(g) by

(5.12) ξ{d) - X^
d)-W and ξq(d) - {rγ

w'mq<d\
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If d~dζ for some ζ G Φ m ' n , then z(d) = Λ(d), v(d) = 0, w(d) = 0, ξ(d) = 1,
and ξg(d) — 1.

T h e o r e m 5.13. £e£ d G P m > n wzϊΛ ζ = £(d) α^d Λ = /ι(d). ΓΛen /or
character χH of i ϊ^ ι n (g) and an?/ character χB of B^nnJ we have:

0) χB(rf) =

Proof. Part (i) follows from (ii) by setting q = 1, so we prove (ii). From

Proposition 5.11 (a), we have

(5.14) c*ω - d<*>' - 4 9 ) ® 4 ρ ) ® • ® c[g)

where type(cι) ^ tyPe{c2 ) > ' " > tyPe(cϊg^) If each 0-cycle is e and each
nonzero cycle has no horizontal edges, then d^ = d^\ and we are done.
Otherwise, there exists a cycle c φ e in (5.14) that has a horizontal edge.
Assume that c is an (m/,n';g)-cycle diagram and that the last horizontal
edge encountered in t(c) while g-traversing c connects tf (c) to tf{c). Then,
CijC = {rjqc, where we are considering εi<7 G H^^^q). Moreover, if E is the
embedding of ε ^ in HT

m n(q), then

(5.15) χH(d^) ± W LΈχH(d) = X

Therefore, we are interested in the product d^ E, or more particularly, cε^ .
If v and v' are vertices in c, we write v^v' if they are connected by an edge.
Let o and o be the vertices in c such that bf(c)<->o and 6f(c)<-*<>, and consider
the four possible locations of o and o.
Case (i): o G tL(c) and o G tR(c). Then we have

c =

m i
where only the edges of interest are included and where edges which come
before these in the cycle pass over the edges shown here. Notice that cε^ ~
e <S> c1 where d G £w--i n'-i ^s a cYcle with the same type as c. If i = 1,
then, since we are using the last horizontal edge encountered in £(c), there
is only one horizontal edge in each row of c, and we must have o = t^(c).
Conjugating c by h — g^g^1 • * * ffm*> m o γ e s t\ (c) to t%(c) and o to <f(c), so
we are safe to assume that o = tf_ι(c) as pictured above.
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Case (ii): o G tL(c) and o G bL(c). Here o = bf+^c) is forced by the
definition of cycle diagram, and the picture is

c =
T T * t f

— ' i >
Eij — ,

rH
-+

We remove the positively-oriented simple curl in ô ->o with penalty qr and
have cβij ~ qre ® d where d G 2?ί$-i,n'-i i s a cycle with the same type as
c. As in case (i), we assume that o = t^_λ{c).
Case (iii): o G bR(c) and o G 6L(c). We must have j = n' and o = 6^_1(c),
so the picture is

c =

UtzL

I I

=ϊ-h
We remove the curl and have ce^n> ~ qre ® d', where c; G ̂ m'-i.n'-i ^s a

cycle with the same type as c.
Case (iv): o G 6Λ(c) and o G ίΛ(c). First we assume that c has more than
one horizontal edge in each row. Then the picture is

c =

The curl is removed with a penalty of qr and cε^ ~ gV ® e where d G

^m'-i,n'-i h ^ ^^e s a i ϊ ie type as c.
If c has only one horizontal edge in each row, then c is a right cycle, and

wΐr 7

Here, the curl is removed with a penalty of q~λ (see Figure 4.7. (Q2*)(b)),
since it has negative orientation. We have cεx^ ~ q~xc' ® e where c' €
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v{q)

We repeat the process with d in place of c until either d — e or d has
no horizontal edges. If c is a 0-cycle, then z(c) — 1, and after h(c) — z(c)
reductions we get d — e. If c is a A -cycle with k Φ 0, then after h(c)
reductions we get d = djf . At each reduction, we multiply by [r] , so in

the end we pick up the scalar [r] ^~z^c\ Each reduction also introduces the
constant qr except for reductions in which we cancel vertical edges and for
the last reduction in the case that type(c) < 0. In this event, we introduce
q~x. Note that in this last case w(c) = 1; otherwise, w{c) = 0. There are
a total of h(c) — z(c) — υ(c) — w(c) reductions in which we multiply by qr

and w(c) reductions in which we multiply by q~ι. If we do this for each
cycle in (5.14) that has a horizontal edge and is not e, then by 5.11(b), we
can conjugate the resulting diagram to be in the form of d£ . To see that
we have picked up the constant £g(d), observe that h(d) — Σt=i h(c{) and

We rescale the bases of H^n(q) and Br

m n as follows:

(5.16)

^ , n = {ξMΓ'd, I d e Pm,n}, Pm,n - {ξidΓ'd I d e vm,n}.

Then Vmj7l and V^n are bases for Bx

mn and H^^q), respectively, that
divides into classes labeled by Φm-n on which characters are constant. For
this reason we call the classes indexed by Φ m ' n character classes. Note that
we have shown, also, that dς and d^ are representatives of the class ζ G Φ m ' n

in their respective algebras.
The idea of diagram type is generalized from [R2]. There, the type of

(m + n)-diagrams is given, and the (m + n)-diagrams are partitioned into
classes.

6. The Quantum General Linear Group.

In this chapter we describe a g-deformation Uq(gί(r,C)) of the universal
enveloping algebra U(gί(r, C)) of the Lie algebra gί{r, C). Such deformations
are known as quantum groups, although they are not groups but are Hopf
algebras over the field C(q) of rational functions. Let 7ί be the Cartan
subalgebra of diagonal matrices in th Lie algebra g£(r, C). For 1 < i < r, let
βi be the basis element of Ή* that projects a matrix onto its i, i-entry. There
exists a non-degenerate bilinear form on Tί* given by (ê , ê ) — δiyj. If we let
Oii — ei — c i+i, then au ... , α r _! is a base of simple roots for the subalgebra
sί(r, C) with respect to its Cartan subalgebra of diagonal matrices. Relative
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to this form (a^a^) = 1, and the Cartan matrix (α^ ) of sί(ryC) satisfies
a,ij = 2(αi,αj). Thus an = 2, α^ — —1, if j — i ± 1, and α^ = 0, otherwise.

Let Uq = Uq(gt(r,C)) be the associative C(g) algebra with generators
{Xf \ 1 <i <r-l}U {tfι I 1 < i < r} subject to the relations:

(1)

(2)

(3)

(4)

ut-1 = l =

Γ -r̂  -J- y — I
A

— ( 9 1 /

and

2 - A:"2

'2 _ g-1/2 '

2 + r 1 / 2 ) *

y. 4. + . +. \f Q

where fcj — t*

i Λ i ± l Λ i "T* ^ ΐ ± tf = 0. Upon let-

ting q —> 1, one obtains the classical Serre relations for the universal en-
veloping algebra of gi(r,C). The element txt2- tr commutes with Uq, and
the subalgebra generated by {Xf^kf1 \ 1 <i <r — 1} is the quantum group
Uq(s£(r,C)). Moreover, the algebra Wg is a Hopf algebra whose structure is
given by

(1) Comultiplication Δ : Uq —> Uq®Uq, where

) - Xfβk^+kiβXf, and

(2) Antipode S:Uq—+ Uq, where 5(Xf) = -qτl/2Xf and

(3) Counit w.Uq —> C(g), where w(Xf) = 0, and u(U) == 1.

Comultiplication Δ is co-associative, so we can define Δ ^ : lλq —> ®*Uq by

(6.1)
i=ι

The fundamental representation of gί(r, C) on V = C r is extended to the
natural representation φq : Uq —> End<c(q) (Vq) oίUq on Vq = V ® C(^) by

(6.2)

where Eij denotes the matrix unit that has a 1 in the (i, ̂ -position and 0
elsewhere. It is straightforward to check that φq is indeed a representation
of Uq and that

(6.3) φq(ki) =
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Let V* be the dual space to V and let Vq* — V* ® C(q). The contragradient

representation φ* : Uq —> End(Vq*) oίlAq on Vq* is given by φ* = t(φqS),

where t denotes matrix transpose. Thus

(6.4)

We induce a representation Φ : Uq —> Endc(q) (Tg

m>n) of Uq on

{®mVq) ® (Θn V ) by

(6.5) Φ = {(®mφq) ® ( ® n ^ ) ) Δ m + n .

Lusztig [Lu] proves that every irreducible Wg-module specializes when

q —> 1 to an irreducible GLr-module (see Leduc [Le] for details). Thus for

7 G Φ™?n, we let Vq

Ί be the irreducible Wg-module that specializes to VΊ.

Lusztig [Lu] proves further that T g

m 'n is a completely reducible Z^g-module.

By letting q —> 1, we see that the decomposition of T™*n as a Wg-module is

(6.6) Γα

m'n ^

where 7727 is the number of (ra, n)-up-sown staircases of shape 7 (see Section

2)

For any invertible element Ίl E Uq ® Wg given by 7£ = ^ α ^ ® 6,, define

^12,^13,^23 G ̂ g

0 3 to be the elements

Then we say that 72- satisfies the quantum Yang-Baxter equation (QYBE) if

(6.7) n12n13n23 = n23n13n12.

Let T :Uq®Uq -*Uq®Uqbe given by T(a ® 6) = 6 ® a for all α, b E Uq.

Then 71 eUq(g)Uq is a, universal iϊ-matrix if it satisfies the relations

(6.8) TA(α) = TZA(a)TZ-1 fora l lα€W α ,

= n13n12.

If 72 is a universal jR-matrix, TZ satisfies (5.8). If p is a representation of

Uq, then R is the matrix given by R — p{TTZ). Jimbo [J] extracts the R
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matrices for the representations Vq ® Vq and Vq* ®Vq*, and shows that they
have the form:

r

(6.9) R =q Σ E

3j ® Eάi + ql/2 Σ EJk ® Ekj + (q -

R* =q
J = l j#A: i>A:

In Endc(q) (Tq

m'n) define the following matrices:

jf̂  = 1 ® •••® 1 ® Jg® 1 ® ® 1 and R] = 1 ® ••• ® 1 ®Λ* ® 1 ® -•- ® 1.

m-(ι+l) n+(i-l) m+(j-l) n-(j+l)

It follows from (QYBE) (6.6) that

(6.10) RiRi+iRi = Ri+ιRiRi+ι and R)R*j+1R) = R]+ιR]R)+ι,

and thus the Rt and the R*. satisfy the braid relations (Bl) and (B2) and
(Bl*) and (B2*), respectively. It was this observation that led Jimbo [J] to
define a representation π : Hf(q) —> End^q){Tf ® C(q)) given by π(^) =

Ri
Define the matrix F G Endc{q) {T^n) by

(6.11) F - l
m - l

Using the fact that ΣΊ=i Q^1 = W9 (
s e e 4-1) w e g e t ̂ 2 = ί r l ρ ^ O n e c a n di-

rectly verify the other H^n(g)-relations to see that the map π : H^^q) —>
EndC(q) (T™^n) given on the generators by

(6.12) π(9i) = Ru πto;) = Λ;, and π(e) = F

is a representation of H^ n(q) Moreover, this representation is well-defined
independent of r. It is straightforward, but quite tedious, to check that Φ(Uq)
commutes with Ri,R*, and F, and, therefore, π : H^n(q) —> EndUq(T™>n).
Kosuda proves the following theorem when r > m + n, and we extend it to
all r > 0.

Theorem 6.13. The map π : Hr

mn{q) —> Enduq(T™*n) is onto for r E
Z+U{0}.

Proof. Since H^^q) and Uq commute, we know that π maps H^^q) into
{T^n). By (6.6), d i m ^ EndUq(T™>n) - Σ 7 € Φ ? . » ™r W e k n o w t h a t
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n = mτ> a n d t h e

result follows by comparing dimensions. D

Remark 6.14. Since H^n(q) maps onto 2?n<i^q(Tg

m'n), there exists an irre-

ducible H.T

m n(ρ)-module M^ for each 7 G Φ™'n. However, when r < m+n the

set {M^\j E Φ™'n} does not form a complete set of irreducibles for H^n(q).

In fact, H^ n(q) is not necessarily semisimple when r < m + n (see Leduc

[Le]). ' D

Let Cr

mJq) = EndUq{T^n) and C^n = EndGL{r^{T^). Then if r >
m + n, we have H^n(q) ^ C^,n(g) and β ^ n = C^ n. Recall the definition

of [μ,v]r/[&,β]r — Π fr°m (3.15). Kosuda proves the following theorem for

r > m + n and Leduc extends it to all r > 0.

T h e o r e m 6.15 [Kos], [Le]. Let [μ,v]r € Φ m ' n . Then

α,y9]r= D

and

[α,/3]r/[μ,i/]r= ϋ

Thus, C(g) Ξ CΓt0(g) C . . . C C^ f 0(g) C C^ t l ( 9 ) C . . . C C^ in(g) and

C = C[ o C C C^o C C^?1 C C C^n are towers of semisimple

algebras with multiplicity free branching such that C[j(g) and Q j have the

same matrix decomposition. The next proposition follows immediately from

Theorem 1.16.

Proposition 6.16. There exists a partition of unity in C^n(ςf) which spe-

cializes when q = 1 to a partition of unity in C^ n. In particular, ifr > m+n

there exists a partition of unity in H^ n(q) that specializes when q — 1 to a

partition of unity in BΓ

mn.

As in Section 2, let {^l5... ,υr} be the standard basis for V, and let
{v 1,... , υ*} be its dual. Then the simple tensors υ_ — viχ ® ® virn ® v*λ ®
''' ® vjn f ° r m a basis of ΓQ

m>n. In this section we give the action of H^n(q)
on this basis. I f l < A ; < m — 1 and 1 < ί < n — 1, then the action of gk,
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g*z , and e

(6.17)

9k

9Γ1

v_

• v_

on v_ is given

ίqv

= W/2sk-v

[q1/2sk-υ
( -1

I9-V2S* . ,

by

+ (q — ί

v

)υ if*

if*

-ik

k > i/b+ij

if 31 < je+i,

Ίΐjt > jι+u

k=l

where the transpositions sk and s*£ act on T™'n by place permutations (3.1).
One can check directly that this action of Hr

m n(q) on TJ71'71 is well-defined.
Notice that if q = 1, then the action of H^n(q) specializes exactly to the

action of Br

mn.

7. Characters.

Denote by χΊ

Hr (ζ) the value of the HL^ (g)-character χΊ

Hr (ΛdW) and by

Xβr (C) the value of the Br

m n-character x j ^ (dζ). We derive the Probenius

formulas for Br

mn and H^^q) and use them to give a character formula

for Xβr (C) and χΊ

Hr (() in terms of Sm x <Sn and Hm(q) ® ί3Γn(g)-characters,

respectively.

7.1. Rational Frobenius Formulas. Let £1,0:2,... , ^ r be commuting, in-
dependent variables. Let { Ϊ ; 1 5 . . . ,υ r} be the canonical basis of V = CΓ
and F g = V ® C(g), and let {υl,... ,?;*} be its dual. Then the set {v^ ®
• ® ^im ® v^ 0 ® Vjn\l < ikijί ^ r} is a basis of simple tensors of
for both the C-vector space Γ m ' n = ( ® m F ) ® (® n F*) and the C(g)-vector
space TJ71'71 = (®mV^) ® ( ® n F / ) . Define the weight of each simple tensor
v_ ~ Vil ® • ® vim ® v*χ ® ® ?;* to be

and for h G H^ n(q) define a weighted trace wtr(h) of h acting on Γg

m 'n by

(7.1) wtr(h) = Σh- v\yWt(v)

where the sum is over all simple tensors y_ E T m ' n , and where h v\y_ is the
coefficient of v_ in h υ. The set up here is analogous to that of [HR].
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Let Γ denote the set of all r-tuples a = (α l 5 α2 5 »ar) of integers with
the property that |αi | + + \ar\ — m + n — 2k for some k satisfying
0 < k < min(m,n). For α G Γ , define

Then {x"|α G Γ} is the set of all possible weights of simple tensors in T9

m > n.
For each a G Γ, define the weight space T™£n to be the span of the simple
tensors of weight a. That is,

τ™*n = f C(g)-span{υ = vtl ® ® υim ® v*h ® ® υ*n | tut(υ) = < } •

The action of Hr

mn(q) on simple tensors (6.13) preserves weight, so T™^n is
an Hτ

m n(g)-module. Thus, we can re-write the weighted trace by summing
over the weight spaces as follows

(7.2) wtr(h) = Σ Σ h'v\vX? = Σtra(h)x?,

where tra(h) is the trace of the action of h on Γ^> n. Notice that if huh2 G

H^n(q), then

wtr(hιh2) =

so lutr satisfies the trace property.

T h e o r e m 7.3. If b e Br

mn, then wtr(b) = J ^ χ ^ n(6)57(a;1,... ,a; r).

Proof. Let ^ G G L r be diagonal with eigenvalues e i , e 2 , . . . , e r Let e r =
( e i , e 2 , . . . , e r ) and x r = ( # i , α ; 2 , . . . ,a; r ), and denote by wtr(b)\Xr=6r and
^^(2z)Ur=rer the specializations of wtr(b) and tϋί(υ) given by setting x{ — ê
for each i — 1,2,... , r . Since g υt = e^ j and g υ* = e^"1^*, we have
g y_ — wt(v_)\Xr=erυ_ for each simple tensor v. Thus, the bicharacter oίb® g
on T m ' n satisfies

Tr(b®g) -

Moreover, by Theorem 3.10, we have

Tr(b®g) = ^ X ^ n ( δ ) 5 7 ( e 1 ? . . . ,e r ) ,
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so wtr(b) and Σ7Gφ^.« Xβr (b)sΊ(xr) are rational functions in xr that agree
at infinitely many specializations xr = er 6 C . Thus they are equal, and
the theorem is proved. D

Corollary 7.4. LetpΊ € Br
mn be a minimal idempotent such thatpΊzΊ — pΊ,

where zΊ is the minimal central idempotent of B^^ associated to 7 E Φ™'n.
Then wtr(pγ) = sΊ(xr).

Proof If p 7 is a minimal idempotent corresponding to 7, then Xβ^n(pΊ) =

P ) 7, so

wtr(pΊ) =

D
Lemma 7.5. If p £ H^^q) is any idempotent, then the weighted trace
wtr(p) is independent of q.

Proof If p G H^niq) is an idempotent, then we can view p acting on T™^n

as a projection from T™>n to pT™^1. We choose a basis of pT™>n and extend
it to T™>n. Relative to this basis, the trace of the matrix of p is its rank, and
therefore tra(p) E Z. Moreover, we know that tra(p) is a rational function in
g, so it must be a constant. Thus wtr(p) — Σ α G Γ tra(p)x" does not depend
on q. D

As in Section 6, let C^Jq) = EndUq(T™>n) and C^ n = EndGLr(T™>n).
Then JEΓ f̂Π(g) (respectively, Br

mn) maps onto C^>n(g) ( C ^ J and is isomor-
phic to Cτ

m n(q) (C^ n) when r > m + n. Moreover, from Proposition 6.17
there is a partition of unity

(7-6) 1 =

in C^ n(q) that specializes to a partition of unity in C^n

Theorem 7.7. If h e Hr

mn{q), then wtr{h) = ]Γ XΊ

H^Λq){h) sΊ(xr).

Proof. For each p] in (7.6) let hΊ

u G C(q) be the constant that satisfies
p]hp] = /ι7iP7 That is, /ι7i is the (i,ΐ)-entry of the matrix of h in the irre-
ducible representation indexed by 7 with respect to the partition of unity.
Therefore,

Σ Λ « > for each

2 = 1



CHARACTERS OF CENTRALIZER ALGEBRAS 401

Using the trace property of wtr, we have

wtr(p]hpp

j) =

where the last equality is proved by using Lemma 7.5 to say that wtr(p]) is
independent of g and using Corollary 7.4 to say that it equals sΊ(xr) when
9 = 1. Thus

Σ Σ

Σ
ΦΓ >

Σ

D
The trick to computing the Frobenius formula is to now compute the

weighted trace in another way. To do this requires the following property of
the weighted trace.

Proposition 7.8. For i = 1,... ,t, let hi G H^.^q). Then the weighted
trace of hx ®h2® ht G Hr

mi^ni {q) ® Hr

m^n2 (q) ® - ® ̂ t | Π | (?)

-wtr(h
t
).

Proof. It suffices to prove the result for t = 2. Let h — hx®h2 E Hmltm (?) ®
i/^ 2 n 2(g) C H^^niq) where m i + m 2 = m and n x -f n 2 = n. For each
simple tensor v = υi]L ® ® vim ® υ^ ® ® υ*n, let y! — viλ ® ® υ < m i ,
v" = ^ i m i + 1 ® • ® vim2, v*' = v^ ® ® υ*n^, and t;*" = ^ n i + 1 ® • ® ̂ *n2.
Then, since hi only acts on υ' and υ* and /i2 only acts on υ" and υ* , we
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have

Therefore, wtr(hι ® h2) — wtr(hι)wtr(h,2). Note this is essentially a proof
of the fact that the trace of the action of Hr

mιnι(q) ® Hr

m2n2(q) on T™'n is
the product of the traces of the action of H^ Uι (q) on TJ71*'™1. D

Let C € Φ™'n. Then by Proposition 7.8 the weighted trace of the character
class representatives d^ and dζ (5.10) satisfies

(7.9) wtr(d[q)) = wtr(d$)wtr(e)hίζ)wtr(d{fi).

Moreover, if the lengths of ( + and (~ are i(ζ+) — i and i{ζ~) — j , respec-

tively, then

(7.10) wtr{d$) - wtr{d{£)wtr{d{£) wtr(d[f),

wtr{d[ql) =

Thus, we directly compute the weighted traces wtr(e) and wtr(d^) for each
k G Z. To do this requires a g-extension of the power symmetric function
given in [Rl]. It is defined on the integer k > 0 by

(7.11) pk(q-χr) =

where the sum is over all weakly increasing sequences / = { l < i i < & 2 <
• < 2fc < r } and J57(/) = |{1 < j < k \ iά = ij+i}\ and L(I) = |{1 < J <
A: I ij < ij+ι}\. For the partition a let p α = PaiPa2 '' mPat Notice that when
q — 1, p fc = Pfc a n d P α — Pa- The next theorem is due to Schur for q = 1 and
was generalized to generic g by Ram.
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Theorem 7.12 [Scl, Sc2], [Rl]. // k > 0, then the weighted trace of
d[q) on ®kVq is wtr(d{q)) = pa(q',xΓ).

Proof. Let y_ = viλ ® υi2 ® ® υk, υ! = υi2 <8> ® vΛ, and v" = υ ί 3 ®

Then, recalling the action of ^ on T^m'n (see (6.18)), we have three cases to

consider.

Case 1: it > i2.

(9k-i 929i) v\υ_wt(υ) = q1/2(gk-i "-92)' (vi2 ® υiχ ® ̂ ' ) l ^ ( ^ ) = °>

since ϊ;i2 ^ υh and gk-i " ' 92 acts only on v^ ® v".

Case 2: ix = i2-

(5Λ-1 * 02ffl) * V|«W*(V) = g(PΛ-l * * 92) υ\υWt(v)

= gz^ (ρft_i g2) - v!\v'Wt(υ!).

Case 3: ix < i2.

|tLtϋt(2;)

i * * 92) ' v\vWt(v)

The theorem follows by induction on k. D

We extend the definition oΐpktok<0 by letting p0 = 1, and for k < 0

letting

(7.13) ί>*te;zr) = P-ibfcΓ1;*;:1)-

Then if CG Φ^'n, we let

and we immediately have the identity

(7.14) pζ(q',χr) =pζ+(q',χr)pζ-{q~1;χr1)'

When q = 1 we get the corresponding extension of the power symmetric
functions to the r staircase ζ E ΦJ '̂n given by letting Po(xr) = 1? for k < 0
letting

(7.15) Pk{xr) = p - f c ί O = xf + x* + + xk

r,

and for ζ 6 Φ ^ ' n letting
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Proposition 7.16. If k < 0, then the weighted trace of d^ on ®~kVg* is

wtr{d[q)) =pk(q;xr) =P_ f c (9" 1 ; ί C Γ 1 )

Proof If k — 0 the result holds trivially. If k < 0, then considering the
action of dq

k = g{~λ gϋ^Lj on ®~~kVq* (see (6.13)), the proof of the previous
theorem holds with q~ι in place of q and x~λ in place of a^. D

Proposition 7.17. TΛe weighted trace of e on Vq ® Vq* is wtr(e) = [r] .

Proof Since e (^ ® v*) = δijq1"1 J2r

i=1 vk ® v^ we have

tx ίr(e) =

1 - w f.
D

We conclude that if ζ e Φ ^ ' n with ζ+ \~ (m - h) and (~ I" (n - Λ), then

(7.18) tι;tr(4 f f )) - [r]Jpc(ςf;a:r) and ^ r ( d ζ ) - rhpζ(xr).

As an immediate consequence of (7.18) and Theorems 7.3 and 7.8 we get the

Frobenius formulas:

Theorem 7.19 (Probenius Formula). If ζ e Φ^'n with ζ+ \~ {m - h)

and ζ~ h (n — h), then

(i) rhpζ(xτ) = Σ X^Sζ)(d{

ς

9))sΊ(xΓ),

7.2. Character Formulas. We now use the Probenius formulas to write

the characters of H^^q) and BJ^n in terms of their subalgebras:

Hm(q)®Hn(q)CHr

mJq).

For α, λ h /, let χέ/(α) denote the irreducible ^/-character labeled by λ
evaluated on the conjugacy class determined by α, and let χ^ ^(oή denote
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the irreducible i?/(<j)-character labeled by λ evaluated on the conjugacy class
determined by α.

Theorem 7.20. Let j,ζ G Φ™'n with 7+ h (m - k), j ~ h (n - A;),
( + h m ' = ( m - /ι), and ζ" h n' = (n - h). Then

Σ

Proo/. To prove (ii), we view the Probenius formula (Theorem 7.19) first
with m — m1 and n = 0 and then with n — n1 and m = 0 to obtain

λl-m'

and

1;̂ -1) = Σ
πhn'

Note that these are the Probenius formulas for Hm> (q) on ®m/ V̂  and Hn. (q
on ®n#V *̂, respectively. Substituting into (7.15) gives

Pete*') = Wϊ Σ χ^. f( )(C

Using the branching rule of Theorem 2.13(b) to expand the product
sχ(xr)sπ(x~1) in terms of rational Schur functions gives

Σ

Since the rational Schur functions sΊ(xr) are linearly independent (see [Koi}
or [Hal]), we can equate the coefficient of sΊ(xr) above with the coefficient
of sΊ(xr) in Theorem 7.19 and obtain
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This proves (ii). Setting q — 1 proves (i) in the case where x = r > m + n.
To extend to the indeterminate re, let

Φ) = *Λ Σ

Then for all integers r > m + n, we have e(r) = χ# r (C), so c(x) and %#* (()
are rational functions in x that agree at an infinite number of points and
thus are equal. D

Corollary 7.21. Let 7, ζ e Φ m ' n with 7+ h (m - k) and j ~ h (n - A;),
ζ+ (- m

7 = ( m - h) and β h n' = (n - Λ). TΛen
(a) Ifh>k, then χ7^ jζ) = 0,

i(C)

/. To have (c£7+)(cj7_) 7̂  0 requires that 7+ C λ and 7" C π. Therefore,
we must have m — k < m — Λ, which proves (i). If /ι = A:, then to have
(c^7+)(cj7_) 7̂  0 requires that we have 7 + = λ,7~ — π, and ί = 0. In
this case, (c£ +)(c£ _) = 1, and (ii) follows. If fc > /ι > 0, then let cί̂  —
c ^ + Θ e ® ^ - 1 ) ® ^ , and

(b) Ifh = k

(c) // fe > Λ > 0,

D

The character table for H^ n(g), denoted Ξ^ , is the matrix whose rows
and columns are indexed by elements of Φ™'n and whose (7, ζ)-entry is given
by χ ^ (£). From Corollary 7.22, we see that if we put an order on Φ m ' n so
that h and A; are increasing, then Ξ^ has the form Here Ξ^ is character

0

Table 7.22: Character Table for Hr

mn{q).

table for Hm(q), and Ξq

n * is character table for Hn{q~x). The matrix 55



CHARACTERS OF CENTRALIZER ALGEBRAS 407

depends both on Iwahori-Hecke algebra characters and on the branching

rule. The indices for the columns of the branching matrix 03 have h = 0 and

the indices for the rows have k > 0. Thus the (7, ζ")-entry of 03 is

(7.23)

The results of Corollary 7.20 hold when q = 1, and thus the character table

for Br

mn is Ξ^ n. We are using the fact that Έ}m®Έ\ is the character table for

Sm x Sn. Setting q — 1 and replacing r with x in (7.23) gives the character

table for B^ n.

As a final corollary of Theorem 7.19, we obtain the branching rules for

the inclusions C[Sm x Sn] C B^n and Hm(q) ® Hn(q) C H^n{q).

Corollary 7.24. Ifr>m + n and 7 e Φ^'n, then

(i) the decomposition of the B^ n-module MΊ into irreducible C[<Sm x Sn]-

modules is given by

(ii) ίΛe decomposition of the H^^q) -module M^ into irreducible

Hm(q) <8> Hn{q)-modules is given by

Concluding Remarks.

1. Leduc [Le] has recently given a C(z, g)-algebra Am,n{z, Q) which special-

izes to B^n when q -> 1 and to H^n{q) when x -> ̂ r . The algebra Am,n{z, q)

is analogous to the Birman-Wenzl algebra BWf(z,q) (see [Wen3]) which is

isomorphic to the Brauer algebra BJ when qr -» 1. If, in our work here,

we replace qr with z and let x — γ^, then the basis Vq

m n is a basis for

Am,n(z,q), and if we replace [r] in Ξ^ n with x, we get the character table

for Am,n{z,q).

2. Leduc [Le] constructs a Markov trace on H^ n(q) such that HΊ

m+lnΛ_ι{q)

is isomorphic to a direct sum of Hm(q) <8> Hn(q) and a Jones basic construc-

tion for HΊ

m_ι n_ι (q) C H^ (q). A recent paper by Halverson and Ram [HR]

studies the characters of algebras containing a Jones basic construction. It
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follows from the results in this paper that the character table of H^ιn(q)
should take the form of Table 7.23. However, the work done in this paper is
necessary to give an explicit H^ n(g)-basis on which to compute characters,
to give the Frobenius formulas, and to give the character formulas.

3. Since T m ' n ^ T m + n as modules for the orthogonal group O(r,C) (see
(3.4)), the branching rule for Br

mn C Bτ

m^rn is the same as for Or C GLr. This
rule was given by Littlewood [Li] for irreducible polynomial
Vχ with£(λ) < [r/2j. It is

(7.25)

where Vμ is the irreducible Or-module labeled by μ, and β even meaning
that β has even parts (i.e., rows). Since det(g) = ±1 for g 6 O r ? and the
irreducible rational GLr-module V1 indexed by 7 is given by the represen-
tation φΊ = det7""1 φ\(Ί) (see (2.9)), the restriction rule VΊ\,%^r is the same
as Vχ^io^r when i(λ(j)) < [r/2\. In the case when ^(λ(7)) > [r/2j,
one must use the modification rules of King [Ki] and Koike and Terada
[KT] to decompose Vχ^ into irreducible Or-modules. Thus, it remains an
open question to determine in closed-form the multiplicity of the irreducible
B^ n-module MΊ in the irreducible J3^+n-module Mμ.

4. A natural question to ask is whether H^n(q) can be embedded in
the Birman-Wenzl algebra BWm+n(z, q), which is a the g-deformation of the
Brauer algebra (see [Wen3]), in the same way that B^n is embedded as a
subalgebra of B^+n. It turns out that such an embedding is impossible, as
it would force the containment of the quantum orthogonal group Uq(o(r, C))
in Uq{gί{r1

(C)). Such a containment does not hold. See [HR] for example.

5. Theorem 7.19 provides a completely algebraic proof that if r > m + n,
then as an H^n(q) ® ZYg(#£(r,C))-bimodule,

where V^ is an irreducible Uq{gί{r,C))-module.
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