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ON THE ZERO SETS OF BOUNDED HOLOMORPHIC
FUNCTIONS IN THE BIDISC

PHILIPPE CHARPENTIER AND JOAQUIM ORTEGA-CERDA

In this work we prove in a constructive way a theorem of
Rudin which says that if £ is an analytic subset of the bidisc
D? (with multiplicities) which does not intersect a neighbour-
hood of the distinguished boundary, then FE is the zero set
(with multiplicities) of a bounded holomorphic function. This
approach allows us to generalize this theorem and also some
results obtained by P.S. Chee.

1. Introduction and statement of the results.

Let H>*(D") be the algebra of bounded holomorphic functions in the poly-
disc. Very few results are known on the analytic sets wich are zero sets of
functions in H°°(D™). Some non trivial examples of such sets were given by
W. Rudin in 1967 [Rul] and P.S. Chee in 1976 [Che]. Rudin showed that

if F is an analytic set in the polydisc D" = {z = (21,... ,2,) / |z:] <1, 1 <
i < n} such that the intersection of E with a neighbourhood of T", where
T ={z2=(21,-..,2n) [/ |zl =1, 1 <i < n},

is empty then E is the zero set of a bounded holomorphic function in D"
(counting multiplicity).

A few years later in 1974, S. Zarantonello [Za] proved that if E is an
analytic set in D™ such that there exist an r € (0,1) and a continuous
function 7 : [r,1) — [r,1) such that, for all z = (z4,...,2,) belonging to
En{zeD"/|z|>r, 1<1i<n} we have

|21] 4 -+ + |Zn—1l)
n—1 ’

lzn|§n<

then F is the zero set of a function F' of the usual Nevanlinna class of D™ (i.e.

sup logt |F(rzy,... ,72,)|do < +oo). A question posed by S. Zaran-
0<r<1JT
tonello in his paper was whether under the same hypothesis a bounded func-

tion F' can be taken. Chee in 1976 [Che], gave an affirmative answer to that
question.
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The same problem in the unit ball B of C* was considered by B. Berndts-
son in 1980 [Be] and he proved that if E is an analytic subset of B of finite
area (with multiplicity) then it can be defined by a bounded holomorphic
function. In his proof he used the connection between the zero sets of holo-
morphic functions and the equation

(1) i00u = 0,

where 0 is a positive closed (1, 1)-current, found by P. Lelong [Le]. P. Lelong
proved that to each analytic set with multiplicities, i.e. to each divisor,-E
there is an associated (1,1) current

OE = ZZO’U d{, /\dzj

which is positive and closed (i.e. dfg = 0), and showed that any solution u
of (1), with § = 0, can be written as u = log|f|, where f vanishes exactly
in E with the given multiplicities. Thus if we can find a solution u of (1)
which is bounded from above, we have a bounded homomorphic function
which defines the divisor E. We will denote by Supp E the support of the
associated (1,1) current 6.

Here, we will use this method to prove the following:

Theorem 1. Let E be an analytic subset of D? with multiplicities, i.e.
a divisor in D?. Suppose that there erist two continuous functions ny,ns :
[0,1) — [0,1), }i_r)xlln,-(t) =1 such that

Supp EN{(z1,2) € D? [ || = m(t), |22] = ma(t), t€[0,1)} =0

then E is the divisor associated to a bounded holomorphic function in D?.

Remark.
1. Observe that any Rudin variety satisfies the hypothesis of Theorem 1
and also the varieties considered by Zarantonello and Chee.

2. One can give an analogous result for the polydisc (in the case n > 3),
but the computation involved is more tedious.

As the following example shows, the condition of finite area of F is not
sufficient for the existence of a bounded holomorphic function which vanishes
on E.

Let a; be a sequence in D such that

z(l —lai])*? < 400 but Z(l —la;]) = +o00.

i=1 i=1
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Consider E = U, E; with E; = {(21,22) € D? s.t. 2,+2, = 2a;}. Then
the area of E is comparable to

oo

(1 —ai)*2.

i=1
If there were a function f € H*(D?) such that f vanished on E, then
g: D — D, g(2) = f(z,2) is bounded and its zeros are {a;} which do not
satisfy the Blaschke condition. This example was previously considered in
[Chl]. In fact in [Ch2] (see also [Ch3]) it is proved that the finite area
condition for a divisor in D? is suficient to assure the existence of a function
belonging to the Nevanlinna class and defining the given divisor, and, in
this particular example, which consists of a union of hyperplanes, the finite
area condition is also necessary to assure the existence of a function in the
Nevanlinna class with zeros the hyperplanes.

Nevertheless there are zero sets E of infinite area which satisfy the hy-

pothesis of Theorem 1, they are even Rudin varieties (i.e. they are far from
T?). Consider for instance the analytic disc defined by

§:D= 0% 1) = (5390)

where g is any inner function of the disc different from a finite Blaschke
1 C e
product. As ||f2(2)|| < 3 the analytic disc is far from the distinguished

boundary. The area of the variety is comparable to the sum of the areas of
the projections on the axis (counting multiplicity). But it can be proved, see
for instance Theorem 6.6 of [Gal, that given any inner function g different
from a finite Blaschke product, then, there exists a set L C D of logarithmic
capacity 0, such that for all z € D\ L, card (g7!(z)) = co. So the projection

.. . . .1
of the analytic disc in the z,-axis is a disc centered in zero and of radius 3

with infinite multiplicity, (possibly the whole disc minus L). Therefore it
has infinite area.

Now we can observe that W. Rudin’s result can be stated as follows: If X
is a divisor in D? that in a neighbourhood of T? is equal to the trivial divisor
associated to the constant function 1 then it is defined by a bounded function.
H. Alexander asked us whether the same result is true if we substitute the
function 1 by any bounded holomorphic function.

In this direction we can prove the following:

Proposition 2. Let X be a divisor in D™. If there exists a divisor Y
associated to a function h € H*®(D™) and a neighbourhood of T™, ¥9(T")
such that

X NHT") =Y n(T")
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then X is the divisor associated to some bounded holomorphic function in

D",

In the bidisc we can prove also

Theorem 3. Let X be a divisor in D%. Suppose that there exists a function
h € H*®(D?) and an r < 1 such that, if Y is the divisor associated to h then

Xia, =Y,

where A, = {(z1,2) € D*/ r < |z1| = |z| < 1}. Then X is contained in a
divisor associated to a bounded holomorphic function.

Remark.

1.

The same result remains true if we substitue A = {(z1, 25) € D?/|z| =
|22]} by {(21,22) € D?/|2z1| + (@ — 1)|22] = @}, @ € [0,1).

In Theorem 3 we cannot assure that the divisor is equal to one defined
by a bounded holomorphic function as the next example, which has
been previously considered by E. Amar, shows. Let f € L?*(D)NH(D),
with zeros a, that do not satisfy the Blaschke condition, i.e.

[oo]

Z(l — |a;]) = oo.

=1

2
Let g(z1,22) = f (f_1_j2-_22_) Consider V = Z(g), where Z(g) denotes

the zero set of g. Suppose that there is a bounded holomorphic function
h such that V = Z(h). Then H(£) = h(€%,€) is an holomorphic
bounded function in the disc, but its zeros do not satisfy the Blaschke
condition (H (&) = 0 <= &% = a;), therefore such an h does not exist.
Now consider

k(z1,20) = f (-’Z—‘—gﬁ) (22— 2)2

As |f(2)] < 4||fllz2py(1 — |2[>)7", see for instance Theorem 7.2.5 of
[Ru2]. Then

2 + 23

2 _1
) < 16| fllz2(py-

k21, 22)] < 4l fllogoy)2 = o[ (1 _

So k is a bounded holomorphic function and Z(k) = V U 2{27 = z}.
So V is contained in the zero set of k. Note that it intersects A in the
same set as Z(k). In fact it coincides with Z(k) outside {22 = 2z, }.
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2. Proof of Theorem 1.
Let E be a divisor in D? which satisfies the hypothesis of Theorem 1 and
2
let 0 =1 Z 0;; d¢; /\de be the (1, 1)-closed positive current associated. We

2,j=1
want to solve the equation (1) with an upper bound for the solution.
This bound will be directly related with the following elementary lemma

(which was also used in [Rul] and [Za]):

Lemma 1. Under the hypothesis of Theorem 1, there exist two constants
M > 0,N > 0 such that for all t € [0,1), there is a neighbourhood ¥, of
Toi) X Toy = {(21,22) € D? [ |2a] = mu(2), |22] = n2(2)} with

/ 011(&1,22) = M, 032(21,&) = N, V (21,22) €9,
[€1l<m(t)

[€2]<n2(t)

Proof. As FE is a divisor in D?, there is an holomorphic function &, such that
defines E, i.e. i00log |h| = 6. Let n;(z,t) be the number of zeros of h in
the disc {&; = 21, |&| < n2(t)}. By the argument principle

1 hz (21762)
nz,t:———,/ fzlon82) :/ Ors (21, 62) -
1(#,1) 270 Jig1=m(r) h(21,&2) &2 leal<na(2) 2(21,6)

Similarly if ny(z,t), 22 € D, is the number of zeros of h in the disc
{l&] <m(t), & = 2} then

]- hz (61722)
ny(2y,t :——,/ =2 :/ ) , %) -
2(72, 1) 21 Jigyj=me) (&1, 22) ‘1 lex]<mi (£) (61, 2)

We choose 9, such that the support of # does not intersect it. As long
as (z1,29) € 9, both functions n,(z;,t) and ny(zs,t) are continuous in z;
and in t because h(&,&2) # 0 when (£,,&) € ¥, for any t € [0,1). As
they are integer valued functions, n;(z;,t) and ny(2»,t) are constant for
(21,22) € Tm(t) X Tnz(t)v te [O, 1)

That means that

ni(z1,t) = N, na(z2,t) = M,
which was the desired result. O

Later on, in order to assure the convergence in a regularization process we
will need that the current satisfies the Blaschke condition. The next lemma
takes care of it.
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Lemma 2. If we have a divisor E with associated (1,1) current 0 such that
it satisfies the conclusion of Lemma 1, i.e.

/ 911(51,22) =M, 922(21,52) =N, \4 (21,22) € v,
[€1l<m () [€2]<n2(t)

and the support of 6 does not intersect 9;, then the divisor E satisfies the
Blaschke condition, i.e. if 6p2 is the distance to the boundary of D?:

/ San2|0] < oo.
D2

Proof. Let _f be an holomorphic function such that it defines the divisor F,
i.e.  =100log|f|, by [Ch1], it suffices to prove that

sup log |f|do < +oo.
<1 JT,.xT,

We use the Jensen formula in the following way: if u is an holomorphic
function in D, for any 0 < ry <71 < 1,

(2) / log|u|da—/ log |u| da=/ dt (/ A(log |ul))
T, Trg o t \JD,

Now, we fix t;, and take ¢ big enough, such that 0 < ¢, < ¢t < 1 and

n;(t) > n;(to), 7 =1,2.
We make a partition of the parameter interval ¢, < --- < t,, = ¢t such that

for any 0 <7 < n the set
Si = {(2!1,22); min(nj(ti)anj(ti+l)) S Izj! S ma'x(nj(ti)7 nj(ti+1))a .7 = 172}

does not intersect the suport of . We fix 0 <7 < n and we consider

/ log|fldo — [ log || do
To(tig1) XTnattigr)

Tvr1(¢;) XTnz(f.')
® =/ log| f|do — [ log f| do
+

Torce) XTa(tig1)

log|f|da—/ log | f| do.

10t X Tno(e;)

m1tip1) X Tnati1)

J

Define A to be the difference of the first two integrals of the right hand side
member of equality (3) and B to be the difference of the last two integrals
of (3). Applying Jensen’s formula (2) to B, we get

n2(ti+1) g
B = {/ - (/ 922(51,52)) } .
£1€Tye;) n2(t:i) S £2€D,

210t) X T gt 41)



ON THE ZERO SETS OF BOUNDED HOLOMORPHIC FUNCTIONS 333

As the support of § does not intersect S; then for any |¢;| = |n,(¢;)| and any
s € [min(nz(t:), m2(ti41)), max(nz(t:), n2(tiv1))] we have

/ 922(51,52) =/ 922(51,52)-
£2€D, £2€Dy, 25y

Thus, because of the hypothesis of the lemma we get

n2(ti+1) ¢
(4) B=N / e,
n2(t:) s

Now we estimate A applying again Jensen’s formula

m(tig1) ds
A= {/ —(/ 911(&1,52))}-
£2€T yp(e541) m(t:) s &1€D,

Just like before we get

71 (tit1)
(5) A=M/ nids
Ui

1(t:) s

We consider now

/ logl fldo — [ log| f| do
To1(e) XT gt To100) XTa(to)

—Z/ Ioglfldo—/T log || do-

1=0 nl(te+1) XTnz('i-n) 21(t5) X Tog(e;)

Now in each term of the sum we can compute with (4) and (5) and get

/ log|fldo — [ log| ] do
Toy(e) XTnp(e) Toitt0) X Ta(to)

m(t) 72(t)
(6) :M/ iJlfﬂLN/ % < Miog —— + Nlog ——
n 7

1
1(to) S 2(to) S M (to) 2 (o)

Define n(t) to be n(t) = min (n;(t),72(t)). Then, by the subharmonicity
and using (6) we obtain

IRy tog|
Ty *Tnce) Thi6) XTage)

< C(m(to),m2(to)) (M +NF /

T120) X Tna(to)

loglfl) < C < +oo.
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Using Lemma 1 and 2, Theorem 1 is a special case of the following theo-

rem.
2 —
Theorem 1'. Let § =1 Z 0:; dé; N dE; be a closed positive current in D2,
ij=1

Suppose that there are two sequences (r}) and (r2), ri € [0,1), lim rt =1,
1 =1,2 such that

(a) For all n, Supp 615N (T, x T,2) = 0.

(b) There is an M > 0 such that for all n there is a neighbourhood ¥, of
T,1 x T,2 such that

sup {/ 011(&1, 22) +/ 922(21,52)} <M.
(21,22)€EVn [€1l<r} [621<r2

(c)
A =/ Sap2|0] < co.
D2

Then there exists a negative solution u to the equation i90u = 6.

To prove this statement, we will first construct an explicit solution of the
equation (1) whose boundary values on T? are well adapted to (a), (b) and
(c). Theorem 1’ will then follow using an appropriate regularization process.

2.1. An explicit expression for the boundary values of a solution
of (1). In this section we will work with a closed positive (1, 1) current with
coefficients in C'*° (ﬁ)

First, using the method developed by M. Anderson in [And], we write
down the solution of (1) with minimal L?(T?) norm. Then we will modify
this solution by adding some pluriharmonic functions to obtain a “good”
expression for the boundary values:

Lemma 3. Let 0 be a closed (1,1) real form with coefficients in C* (ﬁ)
Then the function M(6) defined on T? by

M(o)(thZ) = —i Re {i/geA d(log(1 — &,77) log(1 — 5—222)0(51,52))}

272

™

1 ‘ B
+ — {/|£ <1 log ll — £IE|1011(§1,22) d§1 A d§1

+ /l; <1 10811 -522|i922(21’£2)d€2 A dg} )
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is the boundary values on T? of a solution (which will still be denoted by
M(8)) of the equation i00u = 6 that belongs to C™® (_52—)

Proof. In [And], M. Andersson finds the solution u of (1) with minimal
L?(dA*)-norm, where dA* = (1 — |A])**dX (1 — |X2])*2dX2 and dX is the
Lebesgue measure in the disc. In fact, the integral kernel which solves (1)
with minimal L?(T?) norm can be obtained formally from the Andersson
kernel letting @; — —1 and a; — —1. For the sake of completeness, let us
recall this construction.

Let S denote the Szego projection from L*(T?) to H?*(T?). Let us de-
fine S by Sp = S@ and S° by S°% = (Sp)(0,0). This last is correctly
defined, as any function in H%(T?) can be extended holomorphically to D?
via its Poisson integral. If we consider II = S + S — S° then Iy is pluri-
harmonic in fact it is the orthogonal projection from L2?(T?) to L*(T?) N
{u; u is pluriharmonic in D?}. Let u be a solution of (1). Since Ilu is
pluriharmonic v — ITu depends only on i00u = 6, so we can define an oper-
ator solution which gives us the solution of (1) with minimal L*(T?) norm:

(7) MO =u—Tu.

Now, we want to find an explicit integral formula for M(6). In order
to do this, one must decompose M as a sum of operators which operate
coordinatewise and are of adequate bidegree. We introduce now the needed
operators.

(8) Kou=u— Su.

K is the solution operator which solves the J-equation with minimal L?(T?)
norm. We need also

9) Tou = Su— S°u.

T and K are the conjugate operators defined just like S.
Now in terms of these operators, the solution operator M can be written
as
M (iagu) = Kou — TOu = Kou — TOu
because

M=I-T=I-(5+5-5)=1-5-(5-5°)
and M is real (i.e. M (©) = M(0)).
The explicit formulae for I, K, T, S, S° and M are well-known in one vari-
able, but as Andersson shows, one can find the explicit expression of the
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operators in D?> = D; x D, if we know the expression of the operators in
each variable. For instance

K (5u) =u—Su= (L1, — 515)u= LI, — Sy)u+ (I —51)Su
= LK, (Bu) + K: S (Byu) -
Similarly
(10) M =8M, + M,S? + 1K, + K\ T, - T0 T + K\ K, .

This last expression of M has the advantage that each term of the sum acts
on J0u because of bidegree reasons. For instance K; K, acts on 6y, = 0,0, u.
To prove (10) one substitutes the operators K, T, M in (10) by formulae (7),
(8) and (9) and gets that

M = IlI2 - S]Sz - 5132 + S?Sg

which is exactly the definition. Expression (10) is not symmetric but since

1 —
M is a real operator M = 3 (M + M ), therefore
1 — —
(11) M =S°M, + M, S° + (TIKZ + KT -TiT, + Kle)

1 -
+3 (0K + KT - T + K. K )

and this is the expression that we will compute explicitely. We write down
now the integral expression for each operator in one variable that appears
in (11).

If we have a smooth function u in D then the Szego projection is

S = [ geru©d

and consequently

(12 w)(z) = [ 5u(@)E de.

Let us suppose that 8 = i6;,d¢ A d€, then the Poisson-Jensen formula states
that

_ t-z
(13) O I

9(5)-
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If Gu = w is a smooth (0,1)-form, then the Cauchy-Green formula states
that

i de

(14) K@) = [ g nule).
Similarly

. 1 zd€ w
(15) T)() = | oty M)

The solution M () in D? can be now written applying (12), (13), (14) and
(15) in (11) as:

MO = [ & n0Q+ [ malez) A0(e)

EETXD

+ /E o mal(62) A0(E)

where
ma(E,2) = o log f"’_"{—i ity
mle, ) = o[ S22 ae
and
&) = g ((1_@3@2_@) PEE I
%23 1

dé; N d
(1 -&a)(1 —5222) (& —z)(& - 22)) ndes

" 1 ( Z 22
i \(1 -6 -7) | (& —zl)(l—&'m

% — dE; N dé; .
(1 —&z)(1— 5222) (& — 21)(52 —25)) AL

Then M(0) € C* (D—f) and if we consider only the values at the distin-

guished boundary |z;| = |23] = 1 the expression becomes simpler:

0) (s, i ( dg/\ dé> dé; A d& _) , T2,
MO)(z1,22) = 4n? /em (Z1 — &) (22 — &) * (21 = &) (72 - &) 2 €
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or equivalently

M(0)(21,2) = ~L Re {z/ . dfz_/\o} , zeT2.
£€eD? 21

2m? -& Bm-&

We now modify this solution of (1) by adding some pluriharmonic functions
in C*® (ﬁ), so we will still have a smooth solution of (1). Consider

d dé; zZ1 I
/ 3! A 52_ AG = / 21 dé, A _df2__ N
(eD? 2y 13

- 61 Zy — 62 11<|€2] 1- &Z Zy — fz

(16)

+/ @, 2% 4
leol<leal 21 =& 1 =&z

We look now at the third integral of (16)

/ oA dé, A z2d§ :/ (l_lfll'?)dé A 22d£_2 A0
lel<ial 21— & 1—=6z Jiekial (2 — &)1 —&2z) 11—z

(17)

—/ 6 A é_ld_& A 22‘{_5—2 .
[€2]<|€1] (1 —&z1) 1—&2

The second integral in the right hand side of (17) are the boundary values
in T? of the holomorphic function in A% (D?)

fi(z1,22) = / oA §1d__§1 A zzd_f_z .
1621<1€1] (1=&2z1) 1-62
In the first integral in the right hand side of (17) consider the values of z,
2, extended to the interior of D?, as 0 is C*® (ﬁ), then the integral as a
function of z;, z, is C™ up to the boundary. So we consider now (z;, z,) € D?.
We denote by B. = {(&,£) € D?*; |& — 21| < €}, taking € such that
|21] + € < 1. We have that

[ on tolaln  nds
[§21<[€1l (zl - 51)(1 ~&z) 1-62
(1 = [&]%)d&, A zpdE,
(ei<iamB. (21— &)1 =&z1)  1—-Ez
(1 - |§1’2)d§1 szf_z
0 == =,
+/ N 4 (21 —51)(1“5121) 1 —&32

€

{l&zl<l€a}
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Recall that we denote by A the set {(&,&2) € D% [&] = |&|}. Also, we

will denote by / w = / w. With this notation and applying Stokes’
A A\B.
formula,

: (1 - |§1|2)d§1 szg
0 = =
/I£z|<l€1I 4 (2 — 51)(1 —&121) 4 (1- §222)
' (1 - & *)d& — )
= d ——— log(1 — &329) N O
/|£z|<1£11 ((zl T (1—tm) B 6
_ / dé; A d&;
[&21<]€1] (1 - 5121)2

(A =laP)de e
- /geA (2’1 - 51)(1 - 31_21) 108(1 5222) Mo

log(1 — &2,) NG

/|21—£1|:5 (zl — 61)(1 _ Zl—zl) Og( 6222)
[€2]<|&1]
T dGndg _
- =y log(1 —&2) N O
/|£2I<|§1| (1 —§&2)2 og( £25)

If we let € — 0 the star dissapears in all integrals except from the second
term of the last member:

: dé, =16l g & QH
gl_r)% l:/lzx—&l:s & — 2 {/]§2|<|€1| 1- gzl o Ga) A

= 2%@[ |zl IOg(l - 5_222)7:022(2'1,62)d€2 VAN dg
&2|<|21

So we have for any (z;,2,) € D?
[€2]<[€1] (1=&z)(z = &) 1—&z2

B (1 - [ [2)de, =
=[G Ey e (1-E=) no

+ 27ri/| - Ilog (1 — f_zzz) 1022 (21, £2)dérdEs
&2|<|z1

dg; A d& _
- /I§z|<|£1| m log (1 - §zz2) A

The third term in the right hand side of (18) is holomorphic and we denote
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it by .
dé; N dé,

91(21,2) = / 5 log (1 —522) NCE

léz1<léal (1 - f_lzl)

Since the other terms in (18) are C*™ up to the boundary then g,(z;, z2) is
C* too. We denote its boundary values by the same function g;.
The first term in the right hand side of (18) is

(19)

(1 = |&[*)dé, —
/§€A (71 — &) (1 - 521) g (1 - 6222) Mo

= 46, log(l—gzg)/\G-l—/ _§_1_d_£_1_1

£€A 21 — fl feA 1- 6121

og (1 —5_222) NG.
If we denote by

hl(zl,zz)=~/ _§_—1_C£1__10g (1—5—222)/\9,

ceal =&z

then h; (21, 22) is, as g; and f; holomorphic in D? and C* up to the boundary.
Putting together (18) and (19) we get for (2, 2;) € T?

/ 0N ds A de» / dey log(1 — &,2,) A O
J€21< €1 14

21— & 55"5_2: eaz1 — &
(20)
+2mi /lg 108 (1= Baa) (e, €0) o Ny
2|<

— fi(z1,22) — g1(21, 22) — ha (21, 22)

where g¢;(z1,22), hi1(21,22) and fy(21,22) are the boundary values of some
A®(D?) functions.
Analogously if (21, 2,) € T?

[ on i,
[61]<€2]

n—-&6 H-&

= [ tog(1 - &z =22
£eA

Z2 — Q2

(21) + 279 /l; < lOg(l — 512)1.911(51, 22)d£1 A d&l

— fa(z21,22) — 92(21, 22) — (21, 22)

where g,, f, and h, are antiholomorphic and C* up to dD?.
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Adding (20) and (21) we have that for any (z;,2,) € T?

M(6) = ——— Re {i/{@ d (log(1 - 171 log (1 - &2 ) A e)}

272

s

(22) + l {/IA€ < lOg |1 - 5131_”911({1, 22)d§1 AN d§_1

+ / log [1 — &2, if22(21, &) dés AdEZ}
|€2|<1
1 .

+55 Re {i(fi+ g1 +hi+ fa+gs+ha)}.

The third term in the right hand side of (22) is the boundary values of some
smooth pluriharmonic function so

— Re[i(fi + g1+ hi + fa+ g2+ hs)]

is another C'*° (ﬁ) solution of (1), whose boundary values on T? are given
by

M(0)(21, 2) = —— Re {z‘/geAd (log(1 — &,71) log (1 — &a2) A 9)}

272

s

1 . B
+ — {A ! log '1 - Elﬂ|1911(§1,z2)d§1 A dél
1i<1

+ / log ‘1 - Z;Zz‘ 1032(21,&2)dE A df:} .
|€2]<1

O

2.2. A Rudin theorem with bounds. In this section we will apply Lemma
3 to obtain Rudin’s theorem with an explicit bound.

2
Lemma 4. Let§ =1 2 0,;d¢; N\ d€; be a closed positive (1,1) current in
3,j=1
D? which satisfies
(a') there exist r € (0,1) such that the support of 6,5 is contained in
DxD,UD, xD.

(b")
sup {/ 611(61, 22) +/ 922(21,52)} <M
|z1|>r l611<1 [§21<1

|z2[>7
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(¢)
A= / (531)2‘9‘ < o0.
D2

Then there exist a solution u to the equation i00u = @ such that
Hu<0
(i1) lullrp2y < C(M + A), C being a universal constant.

Remark. Note that the bound is in the assertion (ii) of the lemma.
Proof. Lets start by regularizing the current § by convolution

0° = (0% x:)((1 —€)z),

Xe(2) = éx (g) ;

X being a positive radial function C* with integral 1 and support contained
in the ball {|z] < ;}. Let r < < 1. Let D,, be the disc of center 0 and

radius r;. Then 6° € C* (ﬁ), ¢ is a positive closed (1 —1) form such that
6 — 0 as € — 0 in the sense of currents and

where

Supp 65, C Dx D, UD, xD

if € is small enough.

Lets consider now .
u® = M(6°)

the solution of i90u® = 6° defined in Lemma 3. u¢ € C® (W) and are

plurisubharmonic functions (i00u® = #° > 0). We see now that they are
bounded. As they are plurisubharmonic we have to worry only of the values
of u at T? which are by Lemma 3

™

1 . —
u(z1,29) = — {/IE - log |1 — & 71305, (&1, 22)dé1 A dEy
1<

(23) + /'€2|<1 log ll - gh‘ 034 (21,&2)dé2 A dg}

1 Re {i/wd (tog(1 - &:77) log (1~ &2,) A 95)} :

272

Because of the support of 65, the third integral in (23) is

/E K (log(1 — &71) log (1~ &) A 6°)
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= / d (log(l — &%) log (1 - Z;zz) A 05)
£€A\{(£1.,€2)/€1|=€2>71}

= log(1 — &77) log(1 — &22) NG = 0.
[€1]=m1

|€2]=m1

So only the first two terms in the right hand side of (23) can be nonzero.
Now

log 2 . __
w2, 2) < 82 {/K PR AGEAL Y
1/<1

Va

1055 (21,&2) A dfz—} -

[621<1

Thus,

log 2
U€(251,22) < —5—{ sup / 611(é1,22) + sup / 911(21a§2)} .
€111 j€21<1

™ |z2|>m1 |z1]>71
Then for € small enough and because of (b’)
u(z1,22) <CM.

Also if we compute ||u®||.1(r2) we get that

2
Il <= [ [
T Jig1)<1 JzeT?

2
* 7 hsr
s lEzl(l z€T?2

where do is the Haar measure in T and d)\ the Lebesgue measure on D.
Then, for € small enough, ||u®||L1(r2) < C\M.

We estimate now ||u||11(sp2). Let (z1,22) € D x T, by the Poisson-Jensen
formula

UE(Zl,Zz) =/ G (&1, 21)A1uf (€1, 22) +/ P(fl,zl)us(fl,zz)
¢eD £€T

log |1 — &%) (605, (€1, 22)do (21)do (22 )dA(&:)

log |1 — gzzl 054 (21, €2)do(z1)do(22)dA(&2)

where G is the Green function in the disc and P the Poisson kernel, both
are integrable, so

[ wi<c [ 6+ Gl
DxT DxT
So finally,

(24) lu®|lL1(ap2) < CsM.
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Lets compute now the L'(D?) norm of u®. It is known that whenever z =
(zla ZZ) € D?

@)= [ GEDME©+ [ PO
£ebD? £€dD?

where G is the Green function in the bidisc and P the Poisson kernel. It is
easily seen that

(25) /| I62)14M(2) < Koo (€)
and

P(¢,z)dA\(z) < K.
z€D?
Let us check (25) for instance. Consider the function

e |aP)
1&) = 0 Py + (= )

This function belongs to C?(D?)NC (W) It vanishes on the boundary and

moreover 2 212
(=5’ + 1= |alP)

e (F Y P S S P ) e

Thus,
[ IGEDIaND <= [ 66 )A1() dNz) = () < Kéapn(©).
z€D? zeD?
So finally
[ WK [ 5016 + Kl s o,
z2€D? £eD?

Now, because of hypothesis (c') and (24) we get
lullL1(p2) < C(M + A),

C being a universal constant. So there is a sequence &, — 0, such that
u’~ — v in the sense of measures, v being a bounded measure. Thus it
converges also in the sense of currents and 190us" — i9dv. So 190v = @
and v is a plurisubharmonic function such that ||v||z:(p2) < C(M + A). The
inequality v < M follows from the submean-value property of v. Taking
u = v — M we obtain the desired plurisubharmonic function. O
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2.3. End of the proof of Theorem 1'. If  is a current wich satisfies the
hypothesis of Theorem 1’ then 6™ = 0(r;.£,,72¢,) is a dilated current such
that 6 — 6 in the sense of currents when n — co. Moreover hypothesis (a)
(b) and (c) on € imply that 0™ satisfies (a’) (b’) and (c¢’) of Lemma 4. So we
have a solution u® of 90u™ = 6™ such that

(i) u" <0

(i) [lu™| 1 (p2) < C(M + A). C being a universal constant.

As a consequence, with the same argument as in the end of the proof of
Lemma 4, choosing a subsequence n; — oo, we get a solution u = lim u"* -

N —>00

of (1), such that u is negative. ]

3. Proof of Proposition 2 and Theorem 3.

3.1. Proof of Proposition 2. Let X be a divisor in D", then X = (my, X})
where X, are the irreducible components (i.e. the connected components
of the regular points of X) and m, the multipliciy of each X,. Consider
now X' = (my, A;) the irreducible components of X such that they cut
J(T™) and X" = (my, By,) the irreducible components of X that do not cut
J(T™). By Rudin’s theorem, there is a function f, such that Z(f,) = X"
and f, € H*(D"). Now consider h the bounded holomorphic function given,
Z(h) is a divisor Y = (ny, Y;), we separate again the irreducible components
Y' = (ng, Cy) that cut 9(T") and Y" = (ng, Dy) the components that do
not cut. Take one component A, of X', there is one component Cj of Y,
such that they coincide on J(T™). As this is an open set, they coincide along
the whole D™. So X' = Y’, but Rudin’s theorem states that there is an
holomorphic bounded function h, € H*(D") such that Z(h,) = Y" and
moreover 1/h, is bounded in a neighbourhood of T, so finally

f = f2h/h2

is a bounded holomorphic function such that Z(f) = X. 0

3.2. Proof of Theorem 3. Let X be a divisor in D?  as in the proof
of Proposition 2, we consider X' = (my, A;) the irreducible components
that do intersect A N Y(T?) and X" = (my,C}) the components that do
not intersect. By Theorem 1, there is a function f, € H*(D?) such that
Z(f2) = X". Now for any irreducible component A; € X' the intersection
with A must be a curve ;. It can not be a point because {1 > |z;| > |2z,|}
and {1 > |z3] > |z|} are pseudoconvex domains. There is an irreducible
component Yy of Y = Z(h), h € H>®(D?), such that the intersection of Y}
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with A is «; by the hypothesis of the theorem. But -, is a determinant set
in Yy, so Ay = Y;. Thus if we consider

f=f2h

then X C Z(f). a
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