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A CONSTRUCTION OF LOMONOSOV FUNCTIONS AND
APPLICATIONS TO THE INVARIANT SUBSPACE

PROBLEM

ALEKSANDER SIMONIC

In this paper we give a constructive proof of an abstract
approximation theorem inspired by the celebrated result of
V.I. Lomonosov. This theorem is applied to obtain an alter-
native proof of some recent characterizations of the invariant
subspace problem. We also establish density of non—cyclic
vectors for the dual of a set of compact quasinilpotent op-
erators, and conclude with the open problem of obtaining a
similar result for the original set, rather than its dual.

1. Introduction.

V.I. Lomonosov in his paper [8] conjectured that the adjoint of a bounded
operator on a Banach space has a non-trivial closed invariant subspace.
In view of the known examples of operators without an invariant subspace
[6, 11], this is the strongest version of the invariant subspace problem that
can possibly have an affirmative answer. In particular, if the Lomonosov
conjecture is true, then every operator on a reflexive Banach space has a
non-trivial invariant subspace.

Considering the strong influence of Lomonosov's results on the theory
of invariant subspaces, it is not surprising that both the conjecture and
the techniques developed in the interesting paper [8] received further at-
tention. L. de Branges used this result to obtain a characterization of the
invariant subspace problem in terms of density of certain functions. This
stimulated another characterization of the invariant subspace problem given
by Y.A. Abramovich, CD. Aliprantis, and O. Burkinshaw in [1]. Section 4
below presents a more detailed account of this work.

In this paper we take a slightly different approach. First we give a con-
structive proof of the approximation theorem, inspired by the well-known
Lomonosov construction used in [7, 10]. The theorem is of some indepen-
dent interest, and it may have other applications besides the ones given in
the subsequent sections. This theorem is then applied to give an alterna-
tive proof of the main result in [1]. Our proof applies to both real and
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complex Banach spaces, while the original result was established for com-
plex Banach spaces only. The alternative proof somehow explains the role
of compact operators that appear in the characterizations of the invariant
subspace problem [1].

One may notice that the weak*-compactness of the unit ball in dual Ba-
nach spaces plays an important role in [1, 3, 4, 8], as well as in the appli-
cations given in this chapter. In other words, if the Lomonosov conjecture
is true, then the compactness of the unit ball, with respect to the weak*
topology, is likely to be an important ingredient of its proof.

In the last section we put this observation to the test. A straightforward
application of the approximation theorem obtained in Section 3, together
with the Schauder-Tychonoff Fixed Point Theorem, yields density of non-
cyclic vectors for the dual of a convex set of compact quasinilpotent oper-
ators. We end with the open problem of obtaining a similar result for the
original set, rather than its dual.

This work is more or less self-contained and the notation and terminology
used in it is (supposed to be) standard. However, here are a few conventions
that hold throughout this paper:

By an operator we always mean a bounded linear operator acting on a
real or complex Banach space. If Λ is a set of operators and K is a fixed
operator then ΛK stands for the set {AK \ A e A}. Saying that a set of
operators A, acting on a Banach space X, admits an invariant subspace,
means that there exists a non-trivial closed subspace of X that is invariant
under all operators in A. The algebra of all bounded linear operators on a
Banach space X is denoted by B(X), while C(S,X) stands for the space of
all continuous functions / : S —> X. If 5 is a subset of a Banach space X,
then in saying that a linear operator A is in C(S,X), we actually refer to
the restriction of the operator A to the set S.

2. Reflexive Topological Spaces and Continuous Indicator
Functions.

This section introduces some topological preliminaries that lead to a fairly
general treatment of the approximation theory in the next section, where
an important role is played by the partition of unity and the "continuous
indicator functions" associated with a basis for the topology on a compact
domain of certain functions. The existence of continuous indicator functions
can be characterized by a purely topological property of the underlying space,
which is defined as "reflexivity" of the topological space. In this section we
introduce both concepts and establish the connection between them.
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Definition 2.1. Let S — (5, r) be a topological space and denote by
C(S, R) the space of all continuous real-valued functions on S. A topolog-
ical space S is called reflexive if the topology r coincides with the weakest
topology τw on S for which all the functions in (7(5, R) are continuous.

Remark 2.1. The reflexivity of topological spaces is not to be confused
with the corresponding concept of the reflexivity of Banach spaces. Indeed,
we conclude this section by showing that every subset of a locally convex
space is reflexive.

Proposition 2.1. Reflexivity is a hereditary property; i.e. a subspace S
of a reflexive topological space X is reflexive with the relative topology.

Proof. Consider the restrictions of the functions in C(X, R) to the subset
5, and observe that they induce the relative topology on 5, whenever X is
reflexive. D

Definition 2.2. Suppose U is an open subset of a topological space S. A
continuous function Γ: S —> [0, oo) is called a continuous indicator function
of U in S if

U = {s e S I Γ(s) > 0} .

Remark 2.2. If X is a metric space then every open ball

U = U{xo,r) = {xeX\ d(Xjx0) < r} ,

admits a continuous indicator function ΓV: X —> [0, oo), defined by

Γv(x) = max {0, r - d(x, x0)} .

Furthermore, suppose / G C(S,X). Then the open set V = f~x(U) C S
"inherits" an indicator function from U by setting: Tv(s) = Γu(f(s)).

This yields the following characterization of reflexivity.

Proposition 2.2. A topological space S = (S,τ) is reflexive if and only
if there exists an open basis B for the topology r such that each set V G B
admits a continuous indicator function Γy' S —> [0, oo).

Proof. By definition of reflexivity, the family

Bo = {f-'iU) I / G C(5,R) and U = (α,6) C R}
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is a sub-basis for the topology r on a reflexive space 5. Clearly,

is a continuous indicator function of the open interval U = (α, b) in R.
Consequently, Γy(s) = IV (/(s)) is a continuous indicator function for the
set V = f~ι(U) in S. Let V = Vλ Π ... Π Fn for V̂  G β o A continuous
indicator function of V can be defined by

Γv(s) = f[TVk(s).
k=l

Therefore, each set in a basis

B = {V1Π...nVn\ Vk G Bo; n < 00} ,

admits a continuous indicator function.

The other direction is trivial, because the continuous indicator functions

form a subset of C(S, R). D

Remark 2.3. The argument in the proof of Proposition 2.2 shows that the
space R can be replaced by any metric vector space over R in the definition
of reflexivity. In particular, considering the complex valued functions would
not change the definition of reflexivity.

Remark 2.4. While an open set U is uniquely determined by any of its
continuous indicator functions, the converse is of course not true. However,
Proposition 2.2 allows us to choose a basis #, and a corresponding family

ΓB = {Γu:S—>[0,oo) I UeB}

of continuous indicator functions associated with the basis B for the topology
on a reflexive topological space S. In that sense, the correspondence between
the elements of B and an associated family of continuous indicator functions
Tβ can be established.

Although not all topological spaces are reflexive (consider for example
the topology of finite complements on any infinite set) the next proposition
shows that convex balanced neighborhoods in a locally convex space admit
continuous indicator functions, and consequently, all locally convex spaces
are reflexive.

Proposition 2.3. Every locally convex space X is reflexive (as a topological
space).
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Proof. Suppose B is a base for the topology on X consisting of open convex
balanced sets. Then for each U E B:

U = {x G X I μu(x) < 1} ,

where μv is the Minkowski functional of U. The function

Γt/(a;) = max {0, 1 - μu(x)}

is a continuous indicator function for U. By Proposition 2.2, X is reflex-
ive. D

3. A Construction of the Lomonosov Functions.

The proof of the celebrated result of V.I. Lomonosov [7, 10] was based on
the ingenious idea of defining a continuous function with compact domain
in a Banach space, assuming that certain local conditions are met. In this
section we generalize this idea in the form of an approximation theorem.
Since our construction was greatly inspired by the proof of Lomonosov's
Lemma [7, 10], we suggest the following definition.

Definition 3.1. Let A C C(S, X) be a subset of the space of continuous
functions from a topological space 5 to a locally convex space X. The convex
subset C{Λ) C C(S,X), defined by

Λ

AkeA,akeC(S,[0,ϊ\) and ]Γ<** = 1; n < oc \
k=i J

is called the Lomonosov space associated with the set *A, and a function
Λ G C(Λ) is called a Lomonosov function.

Recall that the uniform topology on (7(5, X) is induced by the topology
on a linear space X. If B is a local basis for the topology on X then the sets

U = {feC(S,X) I f(S)cU&B}

define a local basis for the uniform topology on (7(5, X). If X is a locally
convex space then so is C(S,X). In particular, if X is a Banach space then
(7(5, X) with the uniform topology is a Banach space, as well.

We are now ready to give a construction of the Lomonosov function that
uniformly approximates a continuous function within a given neighborhood.

Lemma 3.1. Let A C (7(5, X) be a subset of continuous functions from
a reflexive compact topological space S to a locally convex space X. Fix
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an open convex neighborhood U of 0 in X. Suppose f: S —> X is a
continuous function that at each point of S can be approximated within U by
some element of A; i.e. for every point s G S there exists a function As G A
such that As(s) — f(s) G U. Then there exists a finite subset {A1 ?... , An}
of A, together with continuous nonnegative functions ak: S —> [0,1], such
that Σ2=i ak = 1; and the Lomonosov function Λ G C{A), defined by

lies in the prescribed neighborhood U of f in C(S,X); i.e. (Λ — f)(S) C U.

Proof. By the hypothesis, for every point s G S there exists a function As G A
such that As(s) — f(s) G U. Continuity of the functions / and A8 implies the
existence of a (basic) neighborhood Ws ofsinS such that As(w) — f(w) G U
for every w G Ws. In this way we obtain an open cover for S with the sets
Ws. Compactness of S yields a finite subcover: WSl U . . . U WSn D S.

Each set Ws is associated with a continuous indicator function YWs: S —>
[0, oo). Every point in S lies in at least one neighborhood WSk; therefore the
sum Σ"=i IVβ. (s) is strictly positive for all elements 5 G S. Consequently,
the functions ak : S —> [0,1], defined by

&{s) * f e ( f c = 1 , . . . , n ) ,
Σj=i IV. {s)

are well defined and continuous on S. Also, Σ £ = 1

 αfc(5) — 1 f° r every s G 5,
and α*(s) > 0 if and only if 5 G Wsfc. Therefore, ak(s) > 0 implies that
ASk(s)-f(s)€U.

Set J4* = ASfe (k = 1 , . . . , n). Continuity of the functions α*: S —> [0,1]
and Ak: S —> X implies that the Lomonosov function Λ G C{A), defined

by

is continuous. Observe that

k=\

is a convex combination of the elements in [/, because only those coefficients
ak(s) for which Ak(s) — f(s) G U are nonzero. Since U is a convex set, it
follows that the image of Λ — / is contained in U. In other words, Λ lies in
the prescribed neighborhood U of / in (7(5, X). D
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Remark 3.1. The proof of Lomonosov's Lemma [7, 10] introduces a
special case of the above construction: S is a compact set in a Banach
space X, defined as the closure of the image of the unit ball around a fixed
vector x0, under a given nonzero compact operator K. Furthermore, the
vector x0 is chosen so that the set S doesn't contain the zero vector; A is
the restriction to S of an algebra of bounded linear operators on X that
admits no invariant subspaces. Under the stated hypothesis a construction
of the function Λ: S —> X is given such that Λ G C(ΛK) maps S into the
unit ball around x0] or equivalently, the constant function f = x0 can be
approximated on S within 1 by the elements of C(ΛK). It is clear from the
original construction as well as from Theorem 3.2 that in that case the set S
can be mapped into an arbitrary small neighborhood of xo; or equivalently,
the function / = x0 is in the closure of C(ΛK).

The following approximation theorem follows immediately from Lemma 3.1.

Theorem 3.2. Let A C C(S,X) be a subset of continuous functions from
a reflexive compact topological space S to a locally convex space X. Suppose
that f: S —> X is a continuous function that at each point of S can be ap-
proximated by some element of A; i.e. for every s G S and every neighbor-
hood U of 0 in X there exists a function As G A such that As(s)—f(s) G U.
Then the function f can be approximated uniformly on S by the elements of
the associated Lomonosov space C(A).

In the next section we employ Theorem 3.2 to obtain an alternative proof
of a characterization of the existence of invariant subspaces for algebras of
bounded linear operators acting on a real or complex Banach space. The
complex version of this theorem was first established in [1], using rather
different techniques built on the result of L. de Branges [4].

4. A Characterization of the Invariant Subspace Problem.

We introduce some basic concepts and notation that is consistent with [1],
However, for more details and further references on the invariant subspace
problem, the reader is advised to consult the nicely written and comprehen-
sible original [1],

In this section X stands for a real or complex Banach space of dimension
greater than one and X' for its norm dual. The algebra of all bounded linear
operators on X is denoted by B(X). If A is any subset of B(X), then the
adjoint set A' of A is defined by A' — {A' | A G *A}, where A' is the Banach
adjoint of A.

The set S = {x G X' \ \\x\\ < 1} denotes the unit ball in the dual space
X', equipped with its weak* topology.
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Definition 4.1. The vector space of all continuous functions from S to
X', where both spaces are equipped with the weak* topology, is denoted by
C(S,X'). As usual, C(S) denotes the commutative Banach algebra of all
continuous complex valued functions on S with the uniform norm.

Note that for each T G B(X) the restriction of the adjoint operator
T: S —> X' is a member of C{S, X1). The vector space C(S, X1), equipped
with the norm

||/|| = sup II/OOH,
s€S

is a Banach space.
The Banach space C(S,X') played the central role in [1, 4, 8]. Lomo-

nosov [8] based his proof of an interesting extension of Burnside's Theorem
on the characterization of the extreme points of the unit ball in the norm
dual of (7(5, X1) using the argument of the celebrated de Branges' proof of
the Stone-Weierstrass Theorem [3]. Louis de Branges [4] performed a deep
analysis of the behaviour of these extreme points that yielded a vector gener-
alization of the Weierstrass approximation theorem. This approach resulted
in a characterization of the existence of a nontrivial invariant subspace for
the algebra A! in terms of density of the linear span of the set

{aAf I a G C(S) and A G A} ,

in the space of restrictions of the adjoint operators to 5, with respect to a
topology in C(S,X'), introduced by L. de Branges.

Building upon this work, Y.A. Abramovich, CD. Aliprantis, and O. Bur-
kinshaw in [1], obtained the following characterizations of the existence of a
non-trivial invariant subspace for an algebra A of bounded linear operators
acting on a complex Banach space X:

Theorem 4.1 [Y.A. Abramovich, CD. Aliprantis, and O. Burkinshaw].
There is a non-trivial closed A-inυariant subspace of X if and only if there
exists an operator T G B(X) and a compact operator K G B(X) such that
K'T1 does not belong to the norm closure of the vector subspace of C(S, X')
generated by the collection

{aK'A' I a G C(S) and A e A} .

Theorem 4.2 [Y.A. Abramovich, CD. Aliprantis, and O. Burkinshaw].
There is a non-trivial closed Af-invariant subspace of X' if and only if there
exists an operator T G B(X) and a compact operator K G B(X) such that
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T'K' does not belong to the norm closure of the vector subspace of C(S,X')
generated by the collection

{aA'K* I a e C(S) and A e A] .

We will give a short proof of both theorems as an application of The-
orem 3.2. Our proof applies to real or complex Banach spaces, where in
the case of a real Banach space, C(S) stands for the Banach algebra of all
real-valued continuous functions on the set S.

Observe that the Lomonosov spaces C(K'Λ') and C(A'K'), as defined
in the previous section, are subsets of the linear manifolds introduced in
Theorems 4.1 and 4.2.

Definition 4.2. The vector x in a Banach space X is cyclic for the set of
operators i C B ( I ) whenever the orbit

Ax = {Ax I A e A}

is a dense subset of X. If every nonzero vector is cyclic for *4, we say that
A acts transitively on X. The terms τ-cyclic and τ-transitive are defined
in the same way, by considering the space X equipped with a topology r,
instead of the norm.

The following well known characterizations of the existence of a non-
trivial invariant subspace for an algebra A C B(X) follow immediately from
the definition.

Proposition 4.3. Suppose A C B(X) is a subalgebra of bounded linear
operators on X. The following are equivalent:
(1) A admits no nontrivial closed invariant subspace.

(2) A acts weak-transitively on X.

(3) A acts transitively on X.

(4) A! admits no nontrivial weak*-closed invariant subspace.

(5) A' acts weak*-transitively on X'.

As in [1] we introduce the subspace of completely continuous functions in
C(S,X').

Definition 4.3. A function / G C(S,X') is said to be completely con-
tinuous if it is continuous with respect to the weak* topology on S and the
norm topology on X'. The subspace of all completely continuous functions
is denoted by K,{S, X1).
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Note that KΊ S —> X' is completely continuous whenever K G B(X) is
a compact operator on X.

We are now ready to give a short proof of Theorems 4.1 and 4.2.

Proof of Theorems 1 and 2. We start with Theorem 4.2, which is an almost
straightforward consequence of Proposition 4.3 and Theorem 3.2, applied to
the space JC(S,X').

Suppose A' has a non-trivial closed invariant subspace. Then by Proposi-
tion 4.3, there exists a pair of nonzero vectors #', y' G S such that \\A'x' — y'\\ >
ε > 0 for all A' G A'. Choose any vector x € X such that (#', x) — 1, and de-
fine the rank-one operators K — x®x' and T = x®y'. Clearly T'K'x1 = y',
and since T'K' cannot be approximated by the operators A'K' at the point
a;', it follows that T'K' is not in the norm closure of the linear space gener-
ated by {aA'K' \ a G C(S) and A G A}.

Conversely, suppose A' admits no non-trivial closed invariant subspaces.
Therefore, A' acts transitively on X', and consequently, every operator T'K'
can be approximated by A'K' at each point of S. Furthermore, since K is
a compact operator in B(X), it follows that T'K' G /C(S,X') Theorem 3.2
implies that T'K' is in the norm closure of the Lomonosov space C(A'K')
and thus completes the proof.

The proof of Theorem 4.1 is just slightly more complicated.

Suppose the algebra A admits a nontrivial closed invariant subspace Λ4.
Then M1- is an invariant subspace for A'. Fix a nonzero vector x G M
and a nonzero functional y' G M 1 , and choose a vector y G X such that
{y1\y) — 1 a n d a functional x' G X', with (x',x) = 1. Define the rank-
one operators K = x ®y' and T = y ® x'. Then K'T'y' — y' ψ 0, while
KΆ'y' = 0 for every A' G A'. Consequently, the operator K'T' is not in
the norm closure of the linear span of the completely continuous functions
{OLK'A! I a G C(S) and A G A}.

Conversely, suppose that there exists a compact operator K and an opera-
tor T such that K'T' is not in the closure of the linear subspace generated by
the completely continuous functions {aK'A' \ a G C(S) and A G A}. The-
orem 3.2 implies that there exists a nonzero vector x' G S such that the
orbit ΛΊ = {K'A'x1 \ A G *A} is not a norm-dense manifold in the closure
of the subspace λί = {K'T'x' \ T G B(X)}. By the Hahn-Banach Theo-
rem there exists a functional y" G X" such that {y", K'A'x') — 0 for every
A' G A', and (y", K'T'x') = 1 for some T G B(X). Consequently, K"y" φ 0.
Compactness of K implies that y = ϋf"y" G X, where X is considered
naturally embedded in its second dual X" (Theorem 5.5 [2, p. 185] or The-
orem 2 [5, p. 482]). From (x'.Ay) = 0 for all A G A, it follows that the
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algebra A admits a non-trivial closed invariant subspace. •

It is possible to obtain similar characterizations that do not involve com-
pact operators, by considering some other topology on C{S,X'). Theo-
rem 3.1 in [1] and Theorem 6 in [4] are examples of results in that direction.
We conclude this section by giving yet another characterization of transitiv-
ity for an algebra A in terms of the closure of the Lomonosov space C(A')
with respect to the uniform topology τw*, induced on C(S, X') by the weak*
topology on the dual Banach space X'.

Theorem 4.4. Suppose A C B(X) is a set of bounded linear operators
on X. Then the dual set A' = {A1 \ A G A} acts weak*-transitively on S
if and only if the rw*-closure of the Lomonosov space C(A') is equal to the
subspace

Proof. The proof is almost identical to those of Theorems 4.1 and 4.2 except
that Theorem 3.2 is now applied to the space C(S,X') equipped with the
topology 7^*, instead of JC(S,Xf) with the norm topology.

If the set A' does not act weak*-transitively on X1 then there exists a
nonzero vector x' G S together with a weak* neighborhood W of y' in S
such that A'x' g W for all A' G A'. Choose a vector x G X such that
(x',x) = 1 and let T = x ® y1. Then T'x1 = y', and since T" G C0(S,X')
cannot be approximated by the operators in A' at the point x1, it follows
that T' is not in the τw*-closure of the associated Lomonosov space C(A').

Conversely, if the set A' acts weak*-transitively on S it follows from The-
orem 3.2 that every function / G C0(S, X') can be uniformly approximated
by the elements of C(A'), and thus / is in the rw*-closure of the Lomonosov
space C(A'). D

Corollary 4.5. The algebra A admits no non-trivial closed invariant sub-

space if and only if the τw* -closure of the Lomonosov space C(A') is equal

to the subspace

co(s,x') = {fec(s,x')\ /(o) = o}.

Proof By Proposition 4.3, the fact that A admits no non-trivial invariant
subspace is equivalent to A' acting weak*-transitively on S. The result now
follows from Theorem 4.4. H

Note that the 7v-closure of the Lomonosov space £(B(X)') is always
equal to C0(S, X'). This observation yields a few alternative formulations of
Corollary 4.5, which are left to the reader.
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5. On Convex Sets of Compact Quasinilpotent Operators.

In this section we combine Lemma 3.1 with the Schauder-Tychonoff Fixed
Point Theorem, to establish a density result for non-cyclic vectors for the
dual of a convex set of compact quasinilpotent operators. We discuss in
what sense this result generalizes the celebrated Lomonosov Lemma [7], and
conclude with a problem of establishing a similar result for the original set,
rather than its dual.

Recall that an operator is called quasinilpotent if 0 is the only point in its
spectrum.

Theorem 5.1. Suppose A is a convex set of compact quasinilpotent operators
acting on a real or complex Banach space X, and let A' = {A' \ A E A} be
its dual in B(X'). Then the set of non-cyclic vectors for A' is dense in X1.

Proof. Suppose not; then there exists a functional x0 G X' and a positive
number r > 0 such that all vectors in the ball

S = {xeX'\ \\x-xo\\ <r}

are cyclic for A'. In particular, for every functional x £ S there exists an
operator A' G A1 such that \\A'x — xQ\\ < r. By Lemma 3.1 it follows that
there exists a Lomonosov function Λ G C{A!) such that ||Λ(#) — xQ\\ < r for
all x £ S. Consequently, Λ maps S into itself (weak*-continuously).

The Schauder-Tychonoff Fixed Point Theorem [5, p. 456] implies that Λ
has a fixed point xλ = A(xχ) in S. By the definition of the Lomonosov space

Λ = ^αjfe-AJ., where Ak G A, ak G (7(5, [0,1]) and 2 jα f c = 1; n < oo.
k=l k=l

Therefore A1 = Σ2=i ak(%i)A'k is an operator in the convex set A'. From
A(xι) = x l 5 we conclude that Λ'α i = a .̂ Since xλ φ 0, it follows that 1 is an
eigenvalue for A\ contradicting the assumption that A1 is a quasinilpotent
operator. D

Remark 5.1. Note that (unless A is assumed to be an algebra) it is not
enough to require that the operators in A! have no common invariant sub-
space, in order to ensure that A! acts transitively on Xf. It is indeed possible
to give examples of manifolds of nilpotent operators without a non-trivial
closed common invariant subspace. For such examples on finite-dimensional
vector spaces see [9]. By Theorem 5.1 a manifold of such operators cannot
act transitively on the underlying space.
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Theorem 5.1 does not follow from the original work of V.L Lomonosov [7].
On the other hand, Lomonosov's Lemma [7] easily follows from Theorem 5.1,
in the case when the underlying Banach space is reflexive. In that sense
Theorem 5.1 is a generalization of the Lomonosov Lemma.

This discussion suggests the following question, which we have not been
able to resolve:

Does there exist a convex set A of compact quasinilpotent oper-
ators acting on a real or complex Banach space X such that the
set of non-cyclic vectors for A is not dense in X ?

By Theorem 5.1 the underlying Banach space in such an example (if it
exists) cannot be reflexive. Furthermore, Lomonosov's Lemma implies that
the set A cannot be of the form AK or KA, where if is a fixed compact
operator. In particular, the set A in such an example can never be an
algebra.

Since, according to Theorems 4.1 and 4.2, compact operators are closely
related to the existence of invariant subspaces for algebras of operators, the
answer to the above question might be of some interest to the theory of
invariant subspaces.
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