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VIRTUAL DIAGONALS AND n-AMENABILITYG FOR
BANACH ALGEBRAS

ALAN L.T. PATERSON

We develop higher dimensional amenability for Banach al-
gebras from the viewpoint of Banach homology theory. In
particular, we show that such amenability is equivalent to the
flatness of a certain bimodule and a resultant splitting module
map gives rise to the higher dimensional virtual diagonals of
Effros and Kishimoto. The theory is developed for the non-
unit al case. Examples of n-amenability are given and it is
shown (among other results) that a 2-amenable Banach alge-
bra is amenable if and only if there exists an inner 2-virtual
diagonal.

1. Introduction.

As observed by Effros and Kishimoto ([3]), the problem of "higher coho-
mological dimension" is one of the most intriguing questions in Functional
analysis. The question goes back at least as far as [15, 10.10, p. 92]. In
dimension 1, there is an important and well-developed theory of amenable
Banach algebras ([15, 11, 17, 21]). A Banach algebra A is called amenable
if JΪ1(^4, X*) = 0 for every Banach A-module X. The name is so-called since
if G is a locally compact group, then Lι{G) is amenable if and only if G is
amenable ([15, Theorem 2.5]). For a C*-algebra, amenability coincides with
nuclearity ([7]).

For higher dimensions, let us define, for any n > 1, a Banach algebra A
to be n-amenable1 if Hn(A,X*) = 0 for every Banach ^4-module X. It is
well-known that (n — l)-amenable implies n-amenable.

As Helemskii notices ([11, p. 286]), there are Banach algebras A which
are n-amenable for some n > 1 but not amenable. These include the bipro-
jective Banach algebras with a one-sided identity but not a two-sided iden-
tity. Examples of these are given in [24], and we will look in detail at one of
these which is two-dimensional. For such algebras, Helemskii has shown that
H3(A, X) = 0 for any A-bimodule X. Roger Smith in unpublished work has
shown that there are matrix algebras Bn where Bn is (n + l)-amenable but

1This terminology has been used by B. E. Johnson in a different sense, but for lack of
a better alternative, we will use it as above.
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not n-amenable. It is shown that the algebra T2 of upper triangular 2 x 2
complex matrices is 2-amenable but not amenable2.

Of particular interest are the questions: Does there exist a non-amenable
C*-algebra which is n-amenable for some n? Does there exist a non-amenable
group G such that LX(G) is n-amenable for some n? The present writer has
been unable to solve either of these problems though we note that by the
preceding paragraph, the answer to the first is positive if A is allowed to be
a non-self-adjoint algebra. Under these circumstances, it seemed natural (as
in [3]) to study the Banach algebra case.

B. E. Johnson showed ([14]) that a Banach algebra A is amenable if and
only if there exists M E (A®A)** such that for all a E A,

(1) aM = Ma, π**(M)a = a.

(Here, π is the product map on A and in the right-hand side of the last
equality, we conveniently use a rather than a E A**.) Obviously, when
A contains an identity element e, this last equality can be replaced by:
τr**(M) = e.

Such an element M is called a virtual diagonal and is very useful in the
theory of amenable Banach algebras. Effros and Kishimoto showed that for a
Banach algebra A with unit e, n-amenability is characterized by the existence
of a higher-dimensional version of virtual diagonal which we will call an n-
υirtual diagonal. To define this, for any r > 1, let Cr{A) — A®A® ®A (r
copies of A). Let πn+i : Cn+χ(A)—>Cn(A) be the generalized product map:
If z — αi®α2® ®αn+i € Cn+ι(A), then

(2) πn+i(z) = ^ ( - I ) r + I α i ® α 2 ® • ®ar_1®arar+ι® ®αn+i
r = l

Then an n-virtual diagonal is a cocycle D : Cn_i(i4)->Cn+i(-A)** such that
for α 1 ? . . . ,αΛ_i G A,

(Effros and Kishimoto also obtained a fixed-point characterization of n-
amenability - this will not be considered in the present paper.)

The main focus of this paper is to understand better the significance of the
n-virtual diagonal conditions. For example, a natural question that arises
is: is there an n-virtual diagonal characterization of n-amenability in the

2 Roger Smith and the author have recently shown that this result is true for the algebra
Tn of upper triangular n x n complex matrices. Y. V. Selivanov has informed the author
that he has also proved this result using homological techniques.
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non-unital case. This is not a problem for ordinary amenability since if A is
amenable, it has a bounded approximate identity (bai) and it is essentially
for that reason that the virtual diagonal definition above does not involve
a unit. The situation is very different for higher dimensional amenability:
There are (2-dimensional!) 2-amenable Banach algebras without a bai (§3).
There is a natural way to obtain a version of n-virtual diagonal intrinsically
in terms of A - in §4, such a map will be called an intrinsic n-virtual diagonal.
It seems likely that in the presence of a bai, n-amenability is equivalent to
the existence of an intrinsic n-virtual diagonal but we have only been able
to prove this in one direction (Theorem 4.1).

To deal with the question of the preceding paragraph as well as to clarify
the significance of n-virtual diagonals, we will use the approach to Banach
cohomology as a relative homology theory (in the sense of Eilenberg and
Moore [4]). This approach has been extensively developed in the work of A.
Ya. Helemskii and others and an invaluable source for the theory is the book
[11] by Professor Helemskii.3 Non-unital Banach algebras are not a problem
in Helemskii's approach to amenability in terms of Banach cohomology since
it is developed in terms of the unitization of an algebra. (As we shall see,
the approach readily suggests how to approach n-virtual diagonals in the
non-unital case.)

In §2, we sketch briefly the elements of this theory that we will need in
the sequel. All of this section (and much more) is contained explicitly or
implicitly in [11] though sometimes we have presented the material slightly
differently. It is hoped that the sketch will be helpful to readers who may
be unfamiliar with the theory. It is suggested that readers who know the
theory start with §3 and refer to §2 whenever necessary.

The theory develops homology for left Banach A-modules, as in ordinary
homology, and uses Banach space versions of the fundamental kinds of mod-
ule such as free, projective, injective and flat. In Banach homology, the
(projective) resolutions used are those that split in the Banach category.
The requirement for splitting usually means that we need to use in resolu-
tions A+ - the Banach algebra A with identity adjoined - rather than A.
(Of course, if A has a unit to start with, then we can stay with A.)

As in ordinary homology, one can develop derived functors - in particular
Ext - in the theory using projective resolutions or injective coresolutions. To
cope with two-sided modules the enveloping algebra Ae = A^A^P is used,
and for any Banach A-module X, we have Hn(A, X) = ExtΛeCA+,-X").

Amenability is formulated in terms of the flatness of A+ (over Ae) or

3 The author is grateful to Garth Dales and Niels Gr0nbaek for bringing Professor Helem-
skii's book to his attention.
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equivalently the injectivity of A*+. An indication of the relevance of Ba-
nach homology to n-amenability is that the natural projective resolution for
A+ (which of course can be used to compute cohomology) is given by the
Cn(A+Ys with the πn-maps as given above. (When A is unital we can replace
Cn(A+) by Cn(A) and the resulting τrn+1 is exactly the π n + i that occurs in
the Effros-Kishimoto n-virtual diagonal. This indicates that n-virtual diag-
onals should fit naturally into Banach homology theory.)

Helemskii also considers another projective resolution for A+ "closer" to
A in which the Cn(A+) are replaced by

Dn(A) = A+&A - ®A®A+

((n — 2) copies of A), the πn's having the same formula as before. This
gives us a clue for defining n-virtual diagonals in the non-unital case: Such
a diagonal D is defined in the same way as in the unital case except that the
range of D is in Dn+ι(A)** rather than Cn+ι(A)**.

In view of Helemskii's flatness characterization of amenability, it is natural
to look for a module whose flatness will be equivalent to n-amenability for
A. We will show in §3 (using straightforward homology arguments) that A
is n-amenable if and only if Kn = kerτrn is flat.

Since an Λ-bimodule is flat if and only if its dual is injective, we would
expect splitting properties at the dual level for n-amenable algebras. Indeed
the following theorem ([11, p. 256]) holds: A is amenable if and only if A
has a bai and the dual π* of the product map π : A®A-^A is a coretraction.
An alternative formulation ([2]) states that when A has a bai, then A is
amenable if and only if the short exact sequence of A-bimodules

(3) 0->A*4(A®A)*->iί*->0

where K = ker π splits as an A-bimodule sequence.
In the n-amenable context, we can no longer expect such a formulation to

involve a bai. However we will show that n-amenability for A is equivalent
to the splitting of the sequence

(4) o^x:->Dn + 1(A)*->κ;+ 1^o.

More precisely, there is an Ae module map p : Dn+1(^4)*->ίf* which is a left
inverse for τr*+1.

The main theme of the paper is that an n-virtual diagonal is essentially
a formulation of this splitting at the dual level. In the amenable case, this
is clear in [11, p. 257] and [2]. In that case the relation between p and a
virtual diagonal is easy to express. In higher dimensions, there are technical
difficulties which are addressed in the proof of Theorem 3.2.
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The paper concludes with discussing the question of when n-amenable
implies (n — l)-amenable. The author hopes that this will be helpful in
investigating the question of whether or not n-amenability is equivalent to
amenability for a C*-algebra or a group algebra. What we would like to
show is that an n-amenable Banach algebra is (n — l)-amenable if and only
if there exists an n-virtual diagonal which is a coboundary. We have only
been able to show this when n = 2,3 (Corollary 4.1)4.

The author is grateful to Glenn Hopkins for advice on homology theory
and to Professor Helemskii for invaluable help with Banach homology. He is
particularly grateful to Roger Smith for permission to include the example
of a 2-virtual diagonal for the group algebra of a discrete amenable group
and for showing him an unpublished result exhibiting n-amenable algebras
which are not (n — l)-amenable. Finally the author is grateful to Ed Eίfros
for helpful discussions on higher dimensional cohomology.

2. Some Banach homological algebra.

In this section, we sketch some of the background and results in Banach
homology theory that we will need in the next section. The reader is referred
to Helemskii's book [11] for details. The papers [8, 9, 10] are also helpful.

Let A be a Banach algebra. A Banach space X which is a left A-module is
called a left Banach A-module if the product map π : A®X—>X is continuous
(or equivalently, if there exists M > 0 such that ||αa;|| < M||α||||a;|| for all
a E A and all x E X). For two such modules X and Y, a morphism from
X into Y is an element T E B(X,Y) which is a module map, i.e. is such
that T(ax) = aT(x) for all x E X. The space of such morphisms AB(X, Y)5

is a closed subspace of B(X,Y) and so is a Banach space. The resultant
category of left Banach A-modules is denoted by AΛ4.

We note that AB(X, Y) above is itself in ΛM where for T <ΞAB(X, Y) and
ae A, aT(x) = aT(x).

Similarly, we define the categories of right Banach A-modules and (two-
sided) Banach A-modules. These are denoted respectively by MA and AMA.
In the case where X,Y £ Λ4A, the space of morphisms T : X—»Y is denoted
by BA(X, Y). A two-sided Banach A-module is usually called an A-bimodule.
The dual of a left Banach A-module is a right Banach A-module under the
action: fa(x) = f(ax) for all / E X*, a E A and x E X.

In the right Banach module case, the dual is a left Banach module under
the action: af(x) = f(xa). Of course, the dual of a Banach A-bimodule is
also a Banach A-bimodule.

4The general case has recently been settled by Roger Smith and the present author.
5Helemskii [11, p. 46] uses the notation Ah(X, Y) where we use AB(X, Y).
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Our primary interest is in Banach A-bimodules and it is very convenient
to reduce their study to that of left modules by using the enveloping algebra
of A. (This parallels the use of such an algebra in homological algebra (cf.

[!])•)
The Banach algebra A+ is the algebra A with identity adjoined. So the

elements of A+ are formally sums of the form a + λl with a G A and λ G C ,
and ||α + λl| | = | |α| |+ | λ |. The algebra A+ plays a fundamental role in
Banach algebra homology.

The enveloping algebra of A is defined as follows. Let Aop be the Banach
algebra A with the multiplication reversed. Any X G AM. is a right Aop-
module Xop in the obvious way: x.a — ax for x G X, α G Aop.

We define

(5) Ae = A+®A°P.

A Banach A-bimodule X then becomes a left Banach ^4e-module by setting
(α ® b)x = axb. The converse obviously holds. (Our main interest is in
^4-bimodules, but it is very convenient in the development of the theory to
treat them as left modules, not over A but over Ae.)

A (chain) complex K in AM is a sequence

ία\ ΦTL~1 Y ί™ Y
m + i

where Φm G>ιJ5(Xm+i, Xm) is such that ImΦm C kerΦm_!. The complex
is said to be exact if ker Φm + i = ImΦm for all m. An application of the
Hahn-Banach theorem ([11, p. 50]) shows that the complex (6) is exact if
and only if the dual (cochain) complex in MA

Φ*

is exact.
Recall that a closed subspace If of a Banach space X is complemented

in X if there exists a closed subspace Y of X such that W + Y — X and
VFπy = {0}. Of course, associated with such a Y is the natural (continuous)
projection P from X onto W. Conversely, the existence of a continous
projection P from X onto W is equivalent to W being complemented in X.

The complex (6) is called admissible if it is exact and the kernel of each Φm

is complemented in Xm+i If X and Y are Banach spaces and T G B(X, Ϋ),
then we say that T is admissible if ker T is complemented in X and ImT
is closed and complemented in Y. (We are interested in the splitting of
complexes in AM - see below - and admissibility ensures that there is no
purely Banach space obstruction to this.)
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The notions of retraction and coretraction play an important role in the
theory. Let X,Y e AM, T eAB(X,Y) and Ix be the identity map on X.
The map T is called a retraction if there exists a morphism p GAB(Y,X)

such that
Top = Iγ.

(So p is a right inverse for Γ.) Of course, every retraction is surjective.
Similarly, T is a coretraction if there exists a morphism r £ΛB{Y, X) such
that r o T — Ix (so that r is a left inverse for T). Of course, the notions
of retraction and coretraction can be defined in very general categories - in
particular, in the category of Banach spaces.

A short exact sequence

(7) 0±-x£-Y£z<-0

in AM is said to split if φ is a retraction. In this case, Y is the direct sum of
the closed submodules ker φ and p(X) where p is a right inverse for φ. The
resulting projection y-±y — p o φ(y) of Y onto ker φ = Im^> = Z gives that
φ is a coretraction. The latter property for φ is equivalent to the splitting
of (7).

As in the usual homology theory, a fundamental role is played by three
kinds of modules: Protective, infective and flat modules. We will briefly
discuss these in turn.

Let P 6 AM. The module P is called protective if, whenever X, Y E AM,
T EΛB(X, Y) is both surjective and admissible and S EΛB{P, Y), then there
exists R GΛB(P,X) such that S = T o R. (This is the familiar definition
of projective ([13, p. 24]) with the extra requirement of admissibility.) It
is straightforward to show that P is projective if and only if the functor

AB(P,.) is exact, i.e. given an admissible complex (6), the Banach space
complex

(8) • • V 1 ^ B(P,Xm) *£-'A B(P,Xm+1)^ • • •

under the natural maps Φm+ is exact.
The simplest examples of projective modules are (as in the usual theory)

the free ones, where a free A-module is one of the form A+&E where E is a
Banach space. The latter module is given the natural left multiplication of
A C Aj_. Two comments are in order here.

Firstly, in the ordinary theory, an ^-module Z is free if it is ([23, p. 57])"
a sum of copies of A. This can be expressed in our context by saying that
Z is of the form A ® CN for some cardinal N. Because we are working with
Banach spaces it is reasonable to replace the CN by a Banach space E and
close up in the projective tensor product norm.
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Secondly, the reason why we have to replace A by A+ in defining Z is
essentially that A+ is freely generated as an A+ module by 1. To illustrate
the significance of this, we briefly sketch the proof that P = A+®E is pro-
jective ([11, p. 138]). Let T EAB(X ,Y) be an admissible epimorphism and
S eAB(P,Y). Then there exists p G B(Y,X) such that T o p = Iγ. The
required morphism R : P-^X is simply defined by setting R((a + λl) ® e) =
(α + λl)p(5(l ® e)), where α E A, λ G C, e E J? and 1 acts on X as the
identity.

As in the usual homology theory, a module is projective if and only if it
is direct summand (in A-M) of a free module.

We now discuss the functor Ext^ which plays a fundamental role in the
theory.

A projective resolution for X G AΛΊ is an admissible complex of the form

(9)

with every Pm projective. (As we shall see below, there always is such a
resolution.) For Y G A-M, we "miss out" (as in the usual homology theory
[13, p. 131]) the "X" term to define the ΛM-complex of Banach spaces

(10) 0->AB(PO,Y)%AB{PUY)%AB{P2,Y)-+ •

with the natural bounded linear maps Φ^.

The Ext-groups Ext™ (A", Y) are then the homology groups of the complex
(10): Explicitly, Ext^(X,F) = kerΦ^/ImΦ;^ for m > 0. It is easy to
show that Ext°A(X,Y) =AB(X,Y). The group Ext^(X,F) is often called
ΈxtA(X,Y). As in usual homology, the Ext-groups don't depend on the
choice of projective resolution ([11, p. 151]).

There always is a projective resolution for any X G A M. Indeed, the
standard one - a free one - is given by ([11, p. 145]):

(11)

where the morphisms <9n+1 (n > 0) are defined:

α3 ® α n + i ® x - aλ ® α2α3 ® α4® an+1 ® a; +

(12) + (-l) n αi®α 2 ® «3 ® • ®an+1x.

Of course, dι is just the product map.
We note that in each of the modules in (11), Λ's appear between the initial

A+ and the final X. We could also have obtained a projective resolution
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using A+'s everywhere (apart from the X at the end). In relating Ext to the
iϊn-groups below, it turns out that (11) is easier to deal with. This illustrates
the usefulness of being able to choose whatever projective resolution is most
convenient in the calculation of Ext.

In the case where A is unital, we can replace A+ by A in the above
sequence to get a projective resolution. In this case, when X — A, the map
dn+ι coincides with the map π n + 2 of Effros and Kishimoto in [3].

It is straightforward to show that (11) is admissible. (Compare the dis-
cussion below in the case when X = A+.)

Of course, as for any cofunctor that is derived in the appropriate categor-
ical sense, Ext^ has the long exact sequence property: If

(13) Of-ΓVI^lVO

is an admissible sequence in AM. then for any Y E A-M, there is a long exact

sequence ([11, p. 153])

t^(X, Y)

(14)

When X, Y G AMA, the following equality (cf [11, p. 156]) will be useful

later:

(15) ExtΛe(X,Y*) - A

Of particular importance is the case where X = A+. Then ExtΛe(-A+, Y)

is the n-dimensional cohomology group of A with coefficients in Ϋ G A>MA

and is denoted by Hn(A, Y).

Historically (for example, in [16]) the groups Hn(A,Y) were realized as

the cohomology groups of the standard cohomology complex

(16) o->c°μ,

where Cn(A,Y) is the Banach space of bounded linear maps

T : A® A® φA-^Y (n copies of A)

(or equivalently, the space of bounded n-linear maps from A x . . . x A into
Y). Such maps are called n-cochains. The space C°(A,Y) is defined to be
Y. Further the morphisms
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are given by:

δnf(au...,an+1) =

(17) . . . ,α n + 1 ) + (- l ) n + 1 /(αi , . , α n ) α n + 1 .

The elements of ker <5n are called n-cocyles and the elements of Im δ71"1 are
called the n-coboundaries. The nth cohomology group of (16) is thus the
quotient of the group of n-cocycles by the subgroup of n-coboundaries. As
is normal, we will often omit the n in δn when it is clear which n is intended.

For any Banach algebra B, let Cn(B) — B®B® ®B (n copies of B)
and Dn(B) be the space B+®B®... ®B®B+ ((π - 2) copies of B).

To see the connection between the cohomology groups of (16) and the
groups Hn(A, Y) = Ext"je(^+, Y), we consider the resolution (11) with A+
in place of X:

(18)

This resolution is projective for the algebra Ae ([11]). (One can also prove

this using the map G of (24).)

Now T e^eB(Dn,Y) is, via the module map property, determined by

its values as a bounded linear map on l®Cn_2(A)<g)l and when the latter

is identified with Cn_2(^4), the resultant sequence reduces to that of (16)

thus identifying the respective cohomology groups. (In this connection, see

[11, p. 155].)

In preparation for the rest of the paper, we look more closely at the

sequence (18).

Firstly in order to relate the notation to that of [3], we will set dn = π n + 1

for n > 1. Then π2 is the product map π and π 3 is given by:

(19) π3(α®fe®7) = ab®η — a<8>lrγ = a(b ® 1 — 1 ® 6)7.

The map τrn : Dn-^Dn_ι for general n is given by:

πn(αχ ® o2 ®αn_i ® αn) =

QL1CL2 ® a3 ® a n

(20) - e*i ® a2a3 ®--an-i h (- l ) n αi ® α2 ® α n _iα n .

For the following details, cf. [11, p. 145]. It is obvious that for 1 < r < n,

we have

πn(αi ® α2 ® ® αn_i ® an) =
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which we will abbreviate to:

(21) π n - π r <g> / + ( - l ) r + 1 / ® τrn_ r + 1.

Throughout the paper, Kn,Cn and Dn will stand for kerτrn, Cn(A) and
Dn(A) respectively. We now discuss a simple complementation result.

Let En = A® ®A®A+ ((n - 1) copies of A). The map T, where
is clearly a norm continuous linear map from En into Dn. Let

ΓίC = Σ i l l «ΐ ® tt2 ® ® < - l ® an W i t h <*ί > < ^ ^ + a n d α i € ^ ' L β t

α*. = 6} + λ}l with 6} e A and λj G C. Then a; = Σt^i λ j l®4 ®
< G J5n, and

It follows that \\Tx\\ > \\l\\\\x\\. It also follows that Γ extends to a bicon-
tinuous linear map from Cn_i®A+ onto a closed subspace of Dn which we
shall conveniently call l<g>Cn_2<8>̂ 4+.

A similar simple argument shows that Dn is the Banach space direct sum:

(22) Dn = (Cn_!®il+) θ {l®Cn-2®A+)

with associated natural projection maps. We also note here - and this is
useful in connection with Definition 3.1 - that the map w—>1®W®1 from
A® - ®A ((n — 1) copies of A) into Dn+ι extends to a Banach space iso-
morphism from Cn_i onto a closed subspace of Z) n + 1 . The image of w G Cn_i
under this map will be denoted by l®iϋ®l.

Let Q : A+—ϊA be the linear map which is the identity on A and is zero
on the unit 1. Let Q' = Q®I: Dn-*Dn and for u G Dn let

(23) u' = Q'(u).

So Q is the natural projection from Dn onto Cn_i®A+: Note that π n maps
Cn_i<8υ4+ into Cn_2®A+.

Define G : Dn->Dn by:

Then

nn(G(u)) = πn(ti;) - πn(tι#) + 1 ® π ^ ^ ί t i ' ) ) - 0
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so that G(u) € Kn. Let k G Kn. By (22), we can write k = k' + l®υ where
υ G Cn_2®A+. Then 0 = πn(fc) = πn(fc') + v - 1 ® πn_χ(^) giving (after
applying the Dn_i version of Q') that

(24) v + πn(fc')=0, k = G{k).

So G is a Banach space retraction onto UΓn.
A module J £ Λ M is called injective ([11, p. 136]) if whenever X, y G

^.M, p G^S(X, y) is an admissible monomorphism and φ £AB{X, J), then
there exists φ EAB(Y^ J) such that φ o p — φ. Equivalently, J is injective if
and only if, whenever

(25)

is an admissible sequence, then the associated Banach space complex

(26)

is exact, i.e. AB(.,J) is an exact functor. It is easily proved from the
definition that if E is injective and J G A-M- is a direct module summand of
E (i.e. if there is a retraction from E onto J) then J is injective.

Injectivity in the categories MA and AλdA are defined in the obvious
ways.

Any space of the form B(A+,E), where E is a Banach space is in AM,
where the module action is given by: (aT)(a) — T(aa). These are the cofree
modules ([9, p. 212]), and are easily shown to be injective.

As in the usual homology theory, the Ext-functor can also be defined using
injective coresolutions ([11, p. 141]). An admissible complex in AΛ4

(27) O - K K A J O ^ J X - K . .

is called an injective coresolution for Y if all the J^s are injective. (An
injective coresolution for Y always exists using cofree modules in a natural
way.) Then the cohomology groups of the associated sequence

(28)

coincide with the Ext^(X, Y). So Ext can be calculated either by a projective
resolution in the first variable or an injective coresolution in the second
variable.

For the next result see [11, p. 154]. (The corresponding result in ordinary
homology appears in [23, p. 199].)
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Proposition 2.1. Let P,Je AM. Then P is projective if and only if
ExtΛ(P, X) — 0 for all X G AM. The module J is ίnjectiυe if and only if
ExtΛ(X, J) = 0 for all X G AM.

It would be nice if X G AM were projective if and only if X* were injective.
This is not true. However, in the usual homology theory, there is a version
of such a result with flat in place of projective. Indeed ([23, p. 87]) if R is a
ring and B is a right iϊ-module, then B is flat if and only if the "character
module" Hom^(£?, Q/Z) is injective as a left R-module. We would expect in
the Functional analytic context that the character module would be replaced
by the Banach space dual. We now discuss the appropriate notion of a flat
module in AM.

A module Y G AM is called flat ([11, p. 239]) if for any admissible com-
plex

in MA, the associated complex

(29)

is exact. Here, for X G MA, X®AY
 ιs the projective tensor product of X

and Y over A (so that xa ® y is identified with x®ay for x G X, y EY and
a G A).

As in ordinary homology ([23, p. 85]) every projective module in AM is
flat.

It is straightforward to show that (X<8>AY)* is canonically identified with
BA(X,Y*) Using the dual of (29) yields the following beautiful theorem
(due to M. V. Sheinberg): the left module Y is flat if and only if the right
module Y* is injective. In particular, for bimodules, replacing A by Ae

gives:

Theorem 2.1. Let Y G AMA Then Y is flat if and only ifY* is injective.

This result ennables one to investigate flatness in terms of dual injectivity.

3. Cohomology and n-amenability.

The Banach algebra A is called n-amenable if the cohomology groups
Hn(A,X*) = 0 for every Banach A-bimodule X. As discussed in the pre-
ceding section, the Hn(A,X*) can be regarded either as the Ext^ e(A+,X*)
or with the cohomology groups of the standard Banach space complex (16).
Both points of view will be used in this paper. We stress that since we are
dealing throughout with bimodules, the Banach algebra whose homology we
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are discussing is Ae. (Thus when we refer to projective, flat etc. these will
be with reference to Ae, not A)

Amenability for A is the same as 1-amenability (in Johnson's defini-
tion [15, p. 60]) and implies n-amenability for all n. (This follows from
the straightforward equality ([15, p. 9]): For any Banach A-module X,
Hn+ι{A,X*) = Hn{A,B{A,X*)) where B(A,X*) = (A®X)* is a dual
Banach A-bimodule in a natural way. More generally, if m < n, then
m-amenability implies n-amenability. For an Ext-approach to this, see
[11, p. 254].)

We note that n-amenability for A is equivalent to n-amenability for A+.
Indeed, in general, for any Banach algebra A and any Banach A-bimodule
Z, we have

Hn(A,Z)=H(A+,Z)

where the identity of A+ acts as the unit on both left and right sides of Z.
To see this, for such a bimodule, we have ([11, p. 155]) that Hn(A+,X) =
Ext^e(Af,X) = Hn(A,X). A result of Johnson ([15, p. 14]) gives that if
B is a unital Banach algebra, Y is a Banach i?-bimodule, and X — eYe
where e is the identity of B, then Hn(B,Y*) = Hn(B,X*). It follows that
A is n-amenable if and only A+ is n-amenable.

In ([11, p. 253]), Helemskii defines A to be amenable if the module A+ is
flat in AMA- We will show that n-amenability is equivalent to the flatness of
the kernel bimodule Kn defined earlier. (This will give Helemskii's definition
in the case n = 1 where Kx — A+.)

Once we have proved this, we will dualize and obtain another character-
ization of n-amenability parallel to the splitting of (3) given earlier. We
then show how this splitting naturally gives rise to n-virtual diagonals. We
conclude the section by looking at some examples of n-amenable algebras
and n-virtual diagonals.

We will use the notations introduced in the previous two sections.

Theorem 3.1. The Banach algebra A is n-amenable if and only if the
bimodule Kn G AMA

Proof. By Theorem 2.1, the flatness of Kn is equivalent to the injectivity of
(Kn)*. By Proposition 2.1, the injectivity of K^ is equivalent to:

(30) ExtAe(X,K*n) = 0

for all X G A MA NOW by (15), the equality (30) is equivalent to:

(31)
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for all X G AM>A It remains to show that for all such X,

(32) ExtAe(Kn,X*) = Extn

Ae(A+,X*) = Hn(A,X*).

(In fact this is true with any Banach .A-bimodule in place of X*.) The rest
of the argument is (with slight modification) similar to a proof of the cor-
responding result [23, Corollary 6.19] in ordinary homology and essentially
appears (in the context of projective homological dimension) on [11, p. 162].
(Indeed, as Professor Helemskii has pointed out, the present theorem is the
"flat" analogue of the "projective" [11, Theorem III.5.4].) We will be con-
tent with a brief summary.

From the admissibility of (18), we see that for each n > 2, the short exact
sequence

(33) 0^1fn->Aι->#n-i->0

of bimodules is admissible. Applying the long exact sequence of cohomol-

ogy (14) to (33) and using the projectivity of Dn and Proposition 2.1, we

obtain (with Ext = Ext^e) that Ext r(ifn,X*) = Ext r + 1(Jf n_ l 5X*). So

Ext^ϋΓn,**) - Ext2(#„_!,X*) - . . . - Extn{KuX*). Since Kx = Λ+, we

obtain the required equality (32). D

We now define the notion of an n-virtual diagonal for A.

Definition 3.1. An n-υirtual diagonal for A is an (n — l)-cocycle

D : Cn_i-*£>*+! such that for all w e Cn-i,

(34) < * + 1 ( ^ H ) = τ r n + i ( l ® u ; ® 1).

In the case where n ~ 1, D above is interpreted as being a virtual diagonal
for A+ as in (1).

When A has a unit, an n-virtual diagonal with values in C * ^ will also be
called an n-virtual diagonal, the context determining which kind of n-virtual
diagonal is intended.

Dualizing the admissible short exact sequence (33) with n replaced by
(n + 1) gives the admissible short exact sequence

(35) 0-+K*n-+D*n+1->K*n+1^0.

We note that in the next theorem, for the case where A is unital, we can
replace Dn+ι by C n + 1 and in that case, the equivalence of (a) and (c) is due to
Effros and Kishimoto ([3]). Their method of proof uses the approach of the
standard complex (16) while in our approach to the following theorem, use of
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the standard complex is combined with homological techniques. (Some use
of the standard cohomology complex is essential since n-virtual diagonals
are cocycles.)

Theorem 3.2. The following conditions are equivalent for a Banach algebra

A:

(a) A is n-amenable.

(b) The sequence (35) splits in terms of A-bimodule morphisms.

(c) There exists an n-virtual diagonal for A.

Proof. (a)4Φ (b). Suppose that A is n-amenable. By Theorem 3.1, the
bimodule Kn is flat. Hence (Theorem 2.1) if* is injective. Now τrn+i is
surjective and (35) is admissible. So π * + 1 is an admissible monomorphism,
and it follows from the definition of injective that π * + 1 is a Banach space
coretraction. So (35) splits and (b) follows.

Conversely, suppose that (b) holds and let p : i)*^—Hff* be a morphism
such that Iκ* — p o (τrn+i)*. Then if* is a direct module summand of
D * + 1 . The latter is injective since it is the dual of a projective module and
projective implies flat. So if* is injective and hence by Theorem 3.1, A is
n-amenable.

(6) 4φ ( c). Assume that (b) holds and let p be a morphism as above. Then
p* : if**—>D*n+χ is also a morphism. Regard Kn C if** and note that for
w E Cn_χ, we have 1 ® w ® 1 £ Dn+Ϊ and π n + 1 ( l ® w ® 1) £ ifn. Define
D : C U - > / ? £ ! by:

£ > H =/9 ( π n + i ( l ® t u ® l ) ) .

We claim that D is an n-virtual diagonal.

Firstly we show that D is an (n — l)-cocycle. Let Wi E A, w = Wι ®

• ®wn_ι £ Cn_i and a G A. Then using the facts that p* and π n + 1 are

morphisms and that π n + 1 π n + 2 = 0,

aD(w) - D(awu... ,w;n_i) 4- h ( - l ) 7 1 " 1 ! ) ^

+ (-l)n£>(α,Wi,... ,lϋn_2)^n-l

= p * π n + 1 (a®w®l — 1® α^i ® ®u>n_i ® 1 +

+ ( - l ) n l ® a ® wx ®

p * π n + 1 ( π n + 2 ( l ® α ® w ® 1))

0.



VIRTUAL DIAGONALS AND n-AMENABILITY FOR BANACH ALGEBRAS 177

Next,

<8>w ® 1).

So D is an n-virtual diagonal.
Now suppose that (c) holds and let D be an n-virtual diagonal for A.

Then the multilinear map a ® w ® β~^a(Dw)β extends to a bounded linear
map D : Dn+1-*D™+1. Define σ : Kn-+D*n*+l by: σ(fc) = D{\ ® fc') where we
are using the notation of (23). We claim that σ is a morphism.

Indeed, let k G Kn and α G A+. Since the dash operation only affects
the left component, we have (ka)' = k'a, and since I) is a right morphism,
we have σ(ka) = l ) ( l ® A 'α) = σ(k)a. We now show that we also have
σ(ak) = aσ(k).

Let a £ A and υ — b\ ® ® 6n_χ ® 1 where 6̂  G ̂ 4. Since D is a cocycle,

b{a®v) =

••• ® 6 n _ i ) l

® 6i ® ® 6n-i) + D{ab1 ® ® 6n_i)

- D ( α ® πn_!(ί>! ® ®6n_i)) + ( - l ) n + 1 i ? ( α ® 6i ® ® 6n-2)&n-i

= D(abx ® 62 ® * ® &n-i)

So

(36) £)(α ® v) = ^ ( 1 ® aυ) - D(l ® α

Since J9 is a right morphism, (36) holds when the 1 at the end of v is replaced
by an arbitrary element of A+.

Let g G Dn. By (22), we can write g = gf + l®v where r; G Cf

n

Let o E A Then using (36),

(ag)') =

D(l ® ') + D(l ® α ® v)

α ® πn(c/'))] + 0 ( 1 ® α ® υ)

(37) = O J D(1 ®g') +D{l®a® {πn{gf) + υ)).

In particular, if g — k G UΓn? then by (24), we have πn(kf) + v = 0, and so

σ(αfc) = JD(1 ® (α/c)7) = αD(l ® fc;) = aσ(k).

Hence σ is an ^4+-bimodule morphism.
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We next show that π*!j_2σ = /, the identity map on Kn. Let h — bx ®
• ® 6n_χ ® /?n where &; G ̂ 1 and βn e A+. Then using the second virtual
diagonal condition,

Clearly this is also true for any h G Cn_i®A|., in particular for h — k' for
k G ϋfn. For such a fc, we then have, using (24), τr*UJ.1σ(fc) = π*UJ_1(-D(l ®
*')) = ̂ +1(1 ® k1) = k' - πn{h') - G{k) = k. So π^σ = I.

Finally, let i : D^+1—>D^X be the natural injection map and p — σ* o i.
Then p is a morphism since both i and σ* are. Further, σ* o π * ^ is the
identity map on ϋΓ* C K™*. Now π*^*x restricted to if* coincides with π*+ 1,
and so has range in D^+ι. Hence po π*+ 1 is the identity on UΓ* and (b) now
follows. •

Examples. (1) Let G be a discrete amenable group. By Johnson's theorem,
the Banach algebra ίι (G) is amenable. So ί1 (G) is 2-amenable. Since ί1 (G)
is unital, it has a 2-virtual diagonal D with values in C3(£1(G))**.

The following 2-virtual diagonal on ίι{G) is due to Roger Smith.
Let m be right invariant mean for the discrete amenable group G with

identity e. (So m is a state on ί°°(G) and m(xφ) = m(φ) for all x G G and
all φ G ̂ °°(G), where s0(t) = φ(tx) for all t G G.) Any 2-virtual diagonal
on ίι(G) is a derivation into the module C3(e}(G))** = iλ(G x G x G)** =
ί°°(GxGx G)* and we only need to specify its values on the group elements.
A 2-virtual diagonal D for ίι (G) is then given by:

(38) D(a) = / (x"1 ®xa®e- x~ι ® x ® α) rfm(x)

where a £ G. The above equation can be interpreted: for / G £°°(GxGxG),

D(a)(f) =m{x^\j(χ-\xa,e) - f(χ-\x,a)]).

The map 2? is actually an inner derivation. Indeed, since a:""1®a;α®e =
a(xa)~ι®xa®e and m is right invariant, a change of variable in the first term
of the right-hand side of (38) gives that for all α, D(a) — az — za where

= / {x ι®x®e)dm(x).
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It is easy to check that the second 2-virtual diagonal condition holds for D
so that D is an inner 2-virtual diagonal.

This is of interest since we have here an amenable Banach algebra with
a coboundary 2-virtual diagonal. This was the main motivation for Corol-
lary 4.1, which relates (n — l)-amenability to the existence of a coboundary
n-virtual diagonal in much greater generality.

It seems likely that a similar formula can be given for a 2-virtual diagonal
on an amenable unital C*-algebra using the right invariant mean that always
exists on its unitary group ([18, 19]). (More precisely, the mean exists on
the space of bounded left uniformly continuous complex valued functions
on the unitary group regarded as a topological group in the relative weak
topology.) Similar issues arise for von Neumann algebras. In fact, ([7, 20]) a
von Neumann algebra is amenable if and only if there exists a right invariant
mean (in a suitable sense) on its isometry semigroup.6

(2) The Banach algebra A in this example is two-dimensional but is of
interest since it is a non-unital (and hence non-amenable) 2-amenable finite
dimensional Banach algebra. Here the 2-virtual diagonal takes its values in
£)** = D3 = A+ ® A ® A+, and it does not seem possible to formulate it in
terms of A only.

Let A be the algebra of 2 x 2-complex matrices of the form

a b
00

and

e = f =

The multiplication in A is determined by the products: e2 = e, ef — f and
fe = 0 — f2. We note that e is a left unit for A.

A theorem of Helemskii ([11, p. 215]) can be used to show that H3(A, X) =
0 for all Banach A-modules X, so that in particular, A is 3-amenable. In-
deed, A satisfies: A2 = A and is biprojective in the sense ([11, p. 188])
that the product map π : A®A—ϊA is a retraction in A-M-A- Indeed, a right
inverse morphism p for π is given by:

p(e) = e®e p(f) = e ® / .

Helemskii's theorem then applies.
6The author is grateful to Professor Helemskii for pointing out that the characterization

of amenability for a von Neumann algebra given in [20, Corollary 1] is homological in
character and was proved earlier by him in [12].
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In fact H2(A,X) — 0 for all Banach A-modules X. I am grateful to
Professor Helemskii for pointing out that this is a consequence of a theorem
in an unpublished paper by Y. V. Selivanov. (See [11, p. 286] for some
details.)

However, we can also show 2-amenability for A by exhibiting a 2-virtual
diagonal. To check that a linear map D : A-+A+ ® A ® A+ is a 2-virtual
diagonal, we need only check the derivation conditions De — eDe + (jDe)e,
Df = eDf + (De)/, fDe + (Df)e = 0 = fDf + (£>/)/, and the conditions:

π3(£>e) = e ® l - l ® e , πs(Df) = f ® 1 - 1 ® /.

The reader can verify that the map D below satisfies these conditions:

D(e) = e ® e ® l - 2 e ® e ® e + l(8)e(8)e

D(f) = - e ® /®e + e®/®l - /®e<g>e + l®e®/.

We note that if A is finite-dimensional, then n-amenability is equivalent
to the formally stronger condition that Hn(A,X) — 0 for every Banach
A-module X. Indeed, if D : Cn—>X is a cocycle, then its range is finite
dimensional and so a Banach dual module. So D is a coboundary if A
is n-amenable. (The condition Hn(A,X) = 0 for every Banach A-module
is important for the study of the homological bidimension dbA of A - see
[11, p. 164].)

We conclude this section by briefly discussing other examples of
n-amenability for finite dimensional algebras.

Let T2 be the algebra of upper triangular 2 x 2 complex matrices. The
algebra T2 is 2-amenable. Indeed, T2 is the algebra obtained by adjoining
an identity to the algebra of Example 2 above and so is also 2-amenable.
Since the algebra of Example 2 is not amenable, it also follows that T2 is not
amenable.

The examples of finite dimensional n-amenable algebras below were shown
to the author by Roger Smith. He shows that if A* is the join (in the sense
of Gilfeather and Smith ([5])) of D2 with Z)2, where D2 is the algebra of
2 x 2 diagonal complex matrices, then Hn(A4,X) — 0 for any any n > 2
and any ^44-bimodule X. Forming repeated suspensions of A4 ([6]) yields
algebras Bn C M 2 n + 2 (where Mr is the algebra of r x r complex matrices)
and he shows that Hm(Bn,X) = 0 for all m > n while i f n ( B n , M 2 n + 2 ) = C
(where M 2 n + 2 has the natural multiplication module action). In particular,
Bn is (n + l)-amenable but not n-amenable.

4. n-virtual diagonals.

In this section, we formulate a version of n-virtual diagonals that involves A
only (without mention of A+). The natural way that this can be done is to
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replace D"+1 by C**^ and to multiply (34) on the left and right by arbitrary
elements of A. We shall call the resulting map an intrinsic n-virtual diagonal.

The situation is parallel to what happens for the classical virtual diagonals,
where the condition π**(M) — 1 condition in the unital case converts to the
condition aπ**(M) = a. The existence of such a virtual diagonal is equivalent
to the amenability of A. Both conditions entail a bai and (roughly) we do
not lose anything by multiplying by an arbitrary element of A because of
Cohen's theorem. The situation is different for higher dimensional virtual
diagonals since as Example 2 of §3 shows, n-amenability does not imply
the existence of a bai. In fact as we shall see, the above Example 2 does
not admit an intrinsic 2-virtual diagonal. We will however show that if A
does possess a bai - and both C*-algebras and group algebras admit such
- then the n-amenability of A implies the existence of an intrinsic n virtual
diagonal.

Definition 4.1. An intrinsic n-virtual diagonal for A is an (n — l)-cocycle
D : Cn-i-^C*^! such that for all w £ Cn_i and o,ίιEA,

(39) α<*+1(D(ω))6 - π n + 1(α ® w ® 6).

In the case where A is unital, an intrinsic n-virtual diagonal is the same as
an n-virtual diagonal with values in Cn+i as discussed before Theorem 3.2.

Theorem 4.1. Let A be an n-amenable Banach algebra with a bai. Then
A has an intrinsic n-virtual diagonal.

Proof. Let {e^} be a bai for A and D be an n-virtual diagonal. Define
Dδ e B{Cn-UC*n*+1) = {Cn^®C*n+1Y by: Dδ(w) = eδD(a)eδ. By weak*
compactness, we can suppose that there exists T G J3(Cn_i, C*+χ) such that
Dj}(w)-ϊT(w) weak* for all w G Cn_i. We claim that T is an intrinsic
n-virtual diagonal.

Indeed for a € A, both \\(ega — ae^)D(w)e^\\ and \\e^D(w)(ae^ — ega)\\
converge to 0. So in the weak* topology, we have e^aD{w)e^-^aT{w) and
e$D(w)beδ-+(T(w))b for all α, 6 G A. It follows that (δT)(a®w) is the weak*
limit of eg(δT)(a ®w)e^ — 0, so that T is an (n — 1) cocycle.

Next, for α,b € A and any 5, we have τx^+ι{ae^D{w)e^b) = τxn+ι{ae^®w®
e$b). Since π*!^ is weak* continuous and {e^} is a bai, it follows that
π*Uj_1(αT(ίi;)6) = πn+1(a®w <g> b). So Γ is an intrinsic n-virtual diagonal.

D

The present writer suspects that the converse to the preceding theorem is
true but has been unable to prove it.
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For F E C;* and x G A, we define F®x E C*^ as follows: For g E C;+ 1,

® a;))

where w E Cr. When yl is finite dimensional, F®x E C r + i would literally be
-F ® a; in the usual sense. For general A, the notation F ® a; is heuristically
helpful. If iV G C 1 1 - 1 ^ , ^ ! ) , we define the (n - l)-cochain JV®a; by:
(N®x)(w) = N(w)®x.

In (40) below, we interpret the right-hand side to be 0 when n = 2.

Proposition 4.1. Let A have a unit e, n > 2 and N £ Cn~2(A, C**) 6e an

(n — 1)-virtual diagonal. Let ai E A (1 < i < (n — 1)) and a = ai® ®an_i.

TΛen

e ) ( a ) + (~l) n + 1 e ® a ® e) =

(40) (- l ) n + 1 π n + 1 (e®a!® ®an_2®e®an_i).

Proof. Let a be as in the above statement. Then for any N G Cn~2(.A, C7**),

® • - <8>αn-i)®e - 7Vr(πn_1(α))(8)e +

(-l)n"1iV(α1<8) ®αn_2)®αn_!

= (ίJV)(α)®e + (-l)niV(α!(8) ®αn_2)αn_1(8)e +

(41) ( - l ) " " 1 ^ ! ® ®αn-2)®αn-i

Now suppose that iV is an (n — l)-virtual diagonal. Then ίΛΓ = 0, and
using the second virtual diagonal condition, we obtain from (41),

(-l)n[<*(iV(α1® ®αn_2))αn_1®e + (-

M a n ^ + {-lY

(-l)n[πn(e®ai® <8>an_2®e)an_i®e - πn(e®a!® ®an_2(g)e)®an_1]

(-l)n[πn(e®ai<g> ®an_2®an-i)®e -

[πn_i(e®ai® ®an-2)®e(g)an_i +

(-l) ne®ai® <g>an_2<g)an_1]]

(-l)n[πn + 1(e®a®e) - (- l) n + 1 e®a!® ®an_χ -

[πn_i(e®ai® ®an-2)®e®an_i + (-l)ne®a!(8) <g>an_2®an_i]]

(-l)n[πn+i(e(g)a®e) - πn_i(e(g)ai<g) ®an_2)®e®an_i].
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The equation (40) now follows.

T h e o r e m 4.2. Let A be a Banach algebra with unit e. Let n > 2 and
assume that there exists a cochain Z : Cn_ 2-»C*+ 1 such that, with a,Q*i as
in Proposition 4.1,

(42) π"+1((δZ)(a) - eΘαj® ®αn_2<g>e<g>αn_i) = 0.

Then A is (n — 1)-amenable if and only if there exists an n-virtual diagonal
for A which is a coboundary.

Proof. Suppose that A is (n — l)-amenable and let N be an (n — l)-virtual
diagonal on A. Let Z be as in (42) and D' = (-ϊ)nδ(N®e) + δZ. Then D'
is an n-virtual diagonal which is a coboundary by (40).

Conversely, suppose that D is an n-virtual diagonal for A which is a

coboundary. Let W : Cn_2—>C^X be a cochain such that D = δW. Define

the cochain V : Cn_2-»C** by:

V(a)=π*n*hl(W(a))-g(a)

where g(a) = e ® a ® e. We claim that V is an (n — l)-virtual diagonal for
A.

Firstly, let Wi G A (1 < i < (n — 1)) and w = it^® ®u;n_1. Then

(43) = π n

Using (43), the fact that D = 5W and the second virtual diagonal condition

for D, we have

(SV)(W) = W1TΓ*n*+

(-llX jWfii),®-®^)]^-, - (δg)(w)

= π*n*+1(D(w)) - Έn+ι{e®w®e)

= 0.

So V is a cocycle.

Next, for a = αx® <8>αn_i, we have

<*(V(a)) = (π n π n + 1 ) '*(W(α)) - nn{g{a))

= τrn(e®α(g)e).

So V is an (n — l)-virtual diagonal. It follows that A is (n — l)-amenable.

D
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Corollary 4.1. A 2-amenable unital Banach algebra is amenable if and
only if it admits an inner 2-υirtual diagonal A 3-amenable unital Banach
algebra is 2-amenable if and only if it admits a coboundary 3-virtual diagonal.

Proof By the preceding theorem, we only have to show that there exists a
Z satisfying (42) for the cases n = 2,3. For the case n = 2 we have to find
Z 6 C;* such that n^(axZ - Zax) = 0 - trivially, Z = 0 will do. For the
case n = 3, we have to find a cochain Z : C\—>Cl* such that

Z(aι)a2) =

It is left to the reader to check that we can take Z(aλ) — a,ι®e®e®e. D

It seems very likely that for general n > 2, if unital A is n-amenable, then
A is (n — l)-amenable if and only if there exists an n-virtual diagonal for A
that is a coboundary. By the above, this is equivalent to the existence of a
Z satisfying (42) for any n.
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