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SOME PROPERTIES OF FANO MANIFOLDS THAT ARE
ZEROS OF SECTIONS IN HOMOGENEOUS VECTOR
BUNDLES OVER GRASSMANNIANS

OLIVER KUCHLE

Let X be a Fano manifold which is the zero scheme of a
general global section s in an irreducible homogeneous vector
bundle over a Grassmannian. We prove that the restriction
of the Pliicker embedding embeds X projectively normal, and
that every small deformation of X comes from a deformation
of the section s. These results are strengthened in the case of
Fano 4-folds.

Introduction.

Let Gr(k,n) = SL(n,C)/P; be the Grassmannian of k-dimensional quotients
of n-dimensional complex space C" considered as quotient of SL(n,C) by
a maximal parabolic subgroup P;. Then (irreducible) representations of P;
give rise to (irreducible) homogeneous vector bundles over Gr(k,n). The
purpose of this note is to prove the following theorems:

Theorem 1. Let X be a Fano manifold which is the zero scheme of a
general global section in a globally generated irreducible homogeneous vector
bundle F over Gr(k,n). Then X is projectively normal.

Here by a Fano manifold we mean a manifold X with ample anticanon-
ical divisor —Kx, and X C Gr(k,n) is considered to be embedded by the
restriction of the Pliicker embedding.

Theorem 2. Let X be as above. Then every small deformation of X is
again the zero scheme of a section in the same homogeneous bundle.

Moreover it becomes obvious from the proof that the bundle F in Theorem
1 can be replaced by the sum of one irreducible vector bundle and line
bundles.

Concerning Fano 4-folds we have a slightly more general result:

Theorem 3. Suppose dim(X) = 4 and that the Picard group Pic(X) of X
is generated by Ox(—Kx). Then the statements of Theorems 1 and 2 remain
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true is F is fully reducible, i.e. direct sum of irreducible homogeneous vector
bundles.

The idea of the proofs goes back to Borcea [Bor] and Wehler [We], who
obtained results similar to Theorem 2 in the case of varieties parametrizing
linear subspaces on complete intersections of hypersurfaces. Nevertheless it
is difficult to make statements for arbitrary irreducible homogeneous vector
bundles. Therefore it is worthwhile to point out that the condition of X
being Fano is crucial here and sharp in a certain sense (cf. Example 4.11
and Remark 5.5). On the other hand homogeneous vector bundles seem to
play an important role in the classification of Fano manifolds (cf. [Muk],
[Kii]), e.g., all Fano 3-folds V' of the “main series”, i.e. with very ample —K,
and by(V) = 1 arise as sections of the sum of an irreducible homogeneous
vector bundle and line bundles over ordinary or isotropic Grassmannians.

The proofs work as follows: The Theorems will follow from the vanishing
of certain cohomology groups of bundles and sheaves on X and Gr(k,n).
Via spectral sequence arguments this is reduced to the vanishing of coho-
mology groups of vector bundles on Gr(k,n) involving only wedge products
and tensor products of F, its dual and the tangent bundle Og, n). Since
all these bundles are homogeneous, we can apply Bott’s Theorem to obtain
the vanishings once we determine the weights of the corresponding represen-
tations. This last step is the “ugly” part and consists in combining various
estimates, and here is where the Fano-condition comes in to keep control of
the shape of the occuring weights.

I would like to thank Rob Lazarsfeld for helpful discussions, UCLA for
hospitality and the Deutsche Forschungsgemeinschaft for financial support.

1.

Let Y = Gr(k,n) C IPY be embedded by the Pliicker embedding. It is well
known that Y is projectively normal of dimension k(n — k) with canonical
line bundle Oy (Ky) = Oy(—n). Let X C Y be a subvariety. Then from the
commutativity of
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where Jx is the ideal sheaf of X in Y and Zx the ideal sheaf of X in IPV ,
it is clear that Ox (1) := Oy (1) ® Ox embeds X projectively normal if and
only if

(1.2) HY(Gr(k,n),Jx(r)) =0 ¥ r>1.

Now let s € H°(Gr(k,n),F) be a general global section in a globally gener-
ated vector bundle F over Gr(k,n), such that X, the variety of zeros of s,
is non-empty. Then it is known (cf. [We]) that every small deformation of
X can be obtained by varying the section s if

(1.3.a) H'(Gr(k,n),F ® Jx) =0, and

(1.3.b) H'(X,06:k,n|x) = 0.

Finally the Koszul complex associated to the section s gives, for any vector
bundle £ on Gr(k,n), spectral sequences

H?(Gr(k,n),E® N F*) =>  HP9(X,E|X)
(1.4)
H?(Gr(k,n),E @ A" F*) = H"%(Gr(k,n),€ ® Jx), q > 0.

2.

Now we recall the set-up and fix notations for the weight calculations. Let

A0
P, = {(B 0) € SL(n,C),A € GL(k,C)},

such that Gr(k,n) = SL(n,C)/P. Then an irreducible homogeneous vector
bundle F comes from a representation of the reductive part of P, consisting
of matrices with B = 0. Such a representation is uniquely determined by
its highest weight which can be written as an integral vector 8 = (8, ..., 0,)
(cf. [Kii]). In this notation the universal quotient bundle Q on the Grass-
mannian, which comes from the representation of A, has highest weight
(1,0,...,0), and the tangent bundle O¢,(,n) reads (1,0,...,0,—1). The vec-
tor bundle F is globally generated if and only if 8; > B;;; foralll <i <n-1,
and the highest weight of the representation corresponding to the dual bun-
dle F* is (—Bry--rs =B1y =By ey —Brt1)-

The Weyl group acts on the weights by permutations among the first &
and the last n — k entries, yielding

(21) rh(F)=dimg) = [] 1A tmsthl

1<i<j<k J—t k+1<s<t<n t—s
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for the rank of the corresponding vector bundle. In this notation, the van-
ishing part of Bott’s Theorem (cf. [Bot], Theorem IV’) can be expressed as
follows:

Theorem. Let F be an irreducible homogeneous vector bundle over Gr(k,n)
with highest weight (1, ...,%). Then H?(Gr(k,n),F) does not vanish if and
only if all entries of the vector (ay,...,a,) = N+ y,n—1+ ¥, ... 1 +v,)
are distinct and p is the number of pairs (i < j) such that o; < a;.

3.

Let X and F be as in the introduction. Since X has positive dimension,
ie. Tk(F) < k(n — k) and (2.1) we may assume that F comes from a
representation of the A-part of Py, which means S, = ... = 8, = 0 for the
corresponding highest weight. Hence we will write g = (fi, ..., Bx) for this
weight, and |3| = B, + ... + Bx. Then by symmetry the weight of det(F) is
rk(B)-|8]/k times the weight (1,...,1) which corresponds to A* Q defining the
Pliicker embedding. Therefore, using the adjunction formula, the condition
of X being Fano turns out to be

k(B) -
- )18
k
which is usually stronger than dim(X) > 0 which in turn reads
k
(3.2) n> C%ﬂ—) + k.

Note that (3.1) shows in particular that the entries of the weights of arbitrary
wedge products of F are smaller than n.

(3.3) Remark. Our results are well known for hypersurfaces in projective
space, so we may assume k,n — k > 2. Moreover we assume that g is not
one of the following (cf. [Kii]):

(i) (1,0,...,0), since X = Gr(k,n — 1) in this case.

(i1) (2,0,...,0), 2k < n, since X parametrizes k-dimensional subspaces on
(affine) (n — 1)-dimensional quadrics in this case. Then X is itself a rational
homogeneous manifold (resp. two disjoint copies of those if 2k = n), hence
known to be rigid and projectively normal.

(iii) (2,0,...,0) and (1,1,0,...,0) for 2k > n, since X = 0 is these cases.

4.

Now we prove Theorem 1. By (1.2) and (1.4) it suffices to show
H?(Gr(k,n),(A°F*)(r)) =0 V p>0,7r>0.
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We will prove a slightly stronger result, namely the vanishing for p > 0 and
r > 0, which also implies the connectivity of X. Suppose one of these groups
does not vanish and let 8 be the highest weight of F. Note that (A” F*)(r) is
fully reducible and apply Bott’s theorem. The proof relies on the elementary
observation that, since there is no space “between” the last n — k entries,
p jumps in steps of n — k and there has to be a (n — k)-jump between the
entries of a weight of A? F. The latter forces 5 to have a jump which makes
the rank big. But the rank in turn is bounded in terms of n which yields a
contradiction.

More formally, there has to be a weight (by,...,b;) of A* F and a positive
integer s < k such that

p=s(n—k)
(4.1) n—1>b>..>2b,>n—-k+r+s

0<b, <...&<bgy1 <r+s.

Moreover, starting with s(n — k)|8] = b; + ... + b, (4.1) together with (3.1)
implies a condition on the rank of g:

k*(k —1)
s(18] — 1)
Beginning with some special cases we show that such bundles do not exist.
(4.3) Using (3.3) we may assume that g # (1,0, ...,0), (2,0,...,0), (1,...,1,0)
or (t,...,1).

(4.4) Suppose k =2. Then s =1, 7 =0, and b, < 1, so b; + by < n, but
p=n—2, hence 3 = (1,0), (1,1), or (2,0).

Suppose k =3. If s=1thenr <1, b,+b; <4. By |B|(n—3) <n+3, we
know |B| < 4, and |8]| > 3 by (4.3). If |3] = 3, then n < 6 and 3 = (3,0,0)
or (2,1,0) contradicting n > rk(3). If || = 4, then n = 5 > 4/3 - rk(0)
shows 8 = (2,1,1).

If s =2, then 7 =0, so by + b, + b3 = (2n — 6)|8| < 2n, but |G| > 3, hence
n < 4.

So we may assume k > 4.

(4.5) Using (4.4), we conclude || < k, in particular 8, = 0.
(4.6) We may assume 3 # (c,0,...,0), since, for ¢ > 3,

- 2(k — 2
k+c—1 >k(k 1)+’f__
~ cfe—-1) c

(4.2) rk(8)|6] < + k2.

rk(c,0,...,0) = (

Suppose 8 = (1,1,0,...,0). By (3.3iii), n — k > k, but b; < k — 1 for the
entries of wedge products of 3.

c
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Suppose 3 = (2,1,0,...,0). Then 3-rk(8) = k(k* —1) > k*(k—1)/2 + k2.
For 8 = (2,2,0,...,0), we have 4 - rk(8) = k*(k* —1)/3 > k*(k — 1)/3 +
k* since k > 4. Moreover rk(t,t,0,..,0) > rk(2,2,0,...,0) for ¢ > 2 and
rk(v,w,0,...,0) > rk(2,1,0,...,0) for v > w > 0.

Hence, by (4.2) we may assume (33 # 0.

(4.7) In the same way it is shown that we may assume f;_, = 0 and |3] > 5.
(4.8) We are left with k& > 6, |8| > 5 and rk(8) > (£), which gives a
contradiction to (4.2).

This completes the proof of Theorem 1.

(4.9) Corollary. Under the assumptions of Theorem 1 X is connected or
2k =n and F ~ S?Q.

Considering a diagram similar to (1.1) and using Kodaira vanishing, we
obtain

(4.10) Corollary. For X to be projectively normal it is sufficient to assume

that F is the sum of one irreducible homogeneous vector bundle and line
bundles.

The following example shows that one has to impose a non-positivity
condition on the canonical bundle.
(4.11) Example. Consider the surface S parametrizing lines on the cu-
bic 3-fold, in this context originally studied by Wehler [We]. S is the
variety of zeros of a section in S*Q over Gr(2,5). Then one can show
H*(Gr(2,5), A*(S*F)*(2)) = 1 and H'(Gr(2,5),Js(2)) = 1, i.e., S is not
quadratically normal with respect to Og(1) = Os(K3s).

5.

The proof of Theorem 2 is similar. By (1.3) and (1.4) it suffices to show
(5.1.a) H?(Gr(k,n), FOAN'F*)=0 V p>1 and

(5.1.b) HP"Y (Gr(k,n), Ok @ NPF*) =0 V p>0.

If (5.1a) does not hold, then there exists an integer 0 < s < k and a weight
(a1, ..., az) of F* @ \*" ™™ F such that
n—1>a>...2a,>2n—k+s
(a)
a < ... < agq1 < S.
Therefore we get
1
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where 3 as always is the highest weight of . Concerning violations of
(5.1.b) the output of Bott’s Theorem is more subtle since the weight of
©Gr(k,n) is involved. Namely, if (5.1.b) does not hold, then there exists an
integer 0 < s < k and a weight (by, ..., b;) of A? F such that either

p=s(n—k)—1
(b) n—1>b>..>b>n—k+s+1

by < ... <byya <8, by <s+ 1,

or

-

p=s(n—k)—2
n—1>b>..2b;_1>2n—k+s

n—k+s—-1<b,<n-—-k+s

[ bk S o Sbsia <5, by S s+ L

Note that g is not of type (1,1,0,...,0), since b < n —k —1 in this case (cf.
(3.3iii)). So by (3.3) we may assume |3| > 3 in the following. Now (b) again
implies (5.2), whereas from (b’) we infer

n < sogimn (8(k — 8) + 2 — k + |Bsk + 2(6)

(5.3) k+2+ 55, s=1

IN

2k for s> 2.

By considering increasing values of |3| and using (3.1) we see that the situ-

ations=1land 2k +1<n<k+2+ —ZTTSI can be excluded.

Hence, by (5.2) and (5.3) it remains to consider the case n < 2k. We do
this by listing all possible highest weights 8 and checking case by case that
(a), (b) and (b’) can not be satisfied.

(5.4) Lemma. Suppose |8] > 3 and
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Then B = (B, ..., k) is one of the following:

i) (@ .,t),t<n—1 (i) (2,1,...,1)

(iii) (2,...,2,1),n = 2k (iv) (1,...,1,0)

(v) (1,1,1,0,0),7 <n < 10 (vi) (1,1,1,0,0,0),n = 11,12
(vii) (1,1,1,1,0,0),n = 11,12.

The Lemma’s proof is obvious.

The exclusion of (i) is immediate and (vii) violates (5.2) and (5.3) since
s > 2 in this case. The remaining types are most economically dealt with by
determining the highest weights of the irreducible summands of the relevant
representations and comparing these to (a), (b) and (b’).

This completes the proof of Theorem 2.

(5.5) Remark. As an illustration of the well known fact that K3 surfaces
have nonalgebraic small deformations we have nonvanishing in (5.1.b) for a
quartic in IP? i.e. F = §*Q over Gr(1,4).

6.

To prove Theorem 3 note that Fano 4-folds with Pic(X) ~ Z- Kx arising as
zeros of sections in fully reducible homogeneous vector bundles over Grass-
mannians have been classified in [Kii]. There are only few cases that are
not covered by Theorems 1 and 2, and verifying the assertions in the above
way poses no further problems.

7.

Finally we ask some questions arising in this context.

(7.1) Question. Are there examples of Fano-manifolds V' (dim(V) > 4)
with very ample — K spanning Pic(V') which are not projectively normal?

(7.2) Question. Do Theorems 1 and 2 hold for fully reducible F?
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