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DOMAINS OF PARTIAL ATTRACTION IN
NONCOMMUTATIVE PROBABILITY

VITTORINO PATA

In this work we focus on infinitely divisible measures rel-
ative to free additive convolution. We give the definition of
domain of partial attraction of a measure, and we prove that
infinitely divisible laws, and only infinitely divisible laws, are
characterized by having non-empty domains of partial attrac-
tion.

1. Introduction.

The aim of this paper is to prove the noncommutative analogue of a well-
known result in classical probability due to Khintchine, namely, a probability
measure is infinitely divisible if and only if it has a non-empty domain of
partial attraction. Our framework is the noncommutative theory of free
products, introduced by Voiculescu in recent years. The key concept in this
new theory is the notion of freeness, which leads naturally to the free ad-
ditive convolution. Many classical results have been proved to have their
classical counterpart, such as the central limit theorem [7, 10], the Khint-
chine characterization of infinitely divisible (with respect to the free additive
convolution) laws [1, 3], the weak law of large numbers [2, 6], and, related
with this paper, the characterization of stable laws as those laws having a
non-empty domain of attraction [8]. A background of this noncommutative
theory can be found in [1, 3, 9, 10]. For reader's convenience, and in order
to render this paper self-contained, we begin recalling some basic facts.

2. Definitions and first properties.

A W*-probability space is a pair (.A, r), where Λ is a noncommutative von Neu-
mann algebra and r is a normal faithful trace.

A random variable is a selfadjoint operator affiliated with A (via the GNS
construction).

An interesting purely noncommutative formal analogue of classical inde-
pendence is the notion of freeness. The analogy is that around freeness,
several concepts can be developed similar to those around independence. A
family of von Neumann subalgebras Λ% C *A, i G / in a VF*-probability space
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is said to be free if τ(αiα 2 . . . an) = 0 whenever τ(dj) = 0, α, E A^, and
h Φ H Φ Φ in-

Given a W'-probability space (A, r) and a random variable X we define
the distribution μx of X to be the unique probability measure on R satis-
fying the equality μχ(σ) = r(Ex(σ)), for every σ G #(R), where Ex is the
spectral measure of X.

An important result is that given a family {yΐ\%^i of probability measures
on R, it is possible to find a ^"-probability space (.A, r) and a family {Xi}iei
of free random variables such that, for all i 6 / μXi = v%.

The concept of freeness allows us to define without ambiguity the free
additive convolution (indicated by 03) between two distributions. Indeed it
can be shown that if X and Y are two free random variables then μx+γ
depends only on μx and μ y, therefore it is possible to define the operation
EB in the following way: μx EB μγ = μx+γ. By the above remark, given
two probability measures μ and v, we find a ^"-probability space (,4, r)
and two free random variables X, Y affiliated with A such that μx = μ and
μγ = v. Thus it makes sense to define μ 03 v = μx+γ. Indeed the additive
convolution is a binary operation (obviously commutative and associative)
defined on the space of probability measures on R.

In the sequel, for α, β > 0, we denote

Γα = {z = x + iy : y > 0 and \x\ < ay} ,

and

Γa,β = {zeΓa:y>β}.

It is possible to associate to every probability measure μ a complex func-
tion φμ (the φ-function of μ), defined on a domain Ω of the form

α>0

with values in C" U R.
The remarkable property of the φ-functions is that, given two probability

measures μλ and μ2, setting μ = μλ 03 μ2, it follows that φμ = 0μ i + 0μ2

Thus the φ-function is the noncommutative analogue of the logarithm of the
characteristic function in classical probability.

Another property of φμ, which is a quite direct consequence of the defini-
tion of φμ, is the following. If X is a random variable in a W*-probability
space, and c a positive constant, then

Φμcχ(Z)=CΦ μx
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We state now two fundamental results from [1], along with the definition
of a ffl-infinitely divisible measure.

Proposition 2.1. Let {μn}£Li be a sequence of probability measures on R.
The following assertions are equivalent
(i) The sequence {/in}^Li converges weakly to a probability measure μ.

(ii) There exist a,β > 0 such that the sequence {φμn}™=ι converges uni-
formly on the compact subsets of Γα>/3 to a function φ, and φμn (z) =
o(z) uniformly in n as \z\ —> oo, z G Γ α ^.

Moreover, if (i) and (ii) are satisfied, we have φ = φμ in Γ α ^.

Definition 2.2. A probability measure μ is said to be tB-infinitely divisible
if for every positive integer n there exists a probability measure μn such that

μ = μn EB . . . EB μn .

n times

The ^-function of a ffl-infinitely divisible distributions can be written in
a canonical form.

Theorem 2.3. The following hold.
(i) A probability measure μ onH is ^-infinitely divisible if and only if φμ

has an analytic extension defined on C + with values in C~ U R.

(ii) Let φ : C + —> C~ be an analytic function. Then φ is a continuation
of φμ for some ϊB-infinitely divisible measure μ if and only if

zera

for some (and hence all) a > 0.

(iii) Let μ be a ^-infinitely divisible probability measure on R. Then there
exist o G R and a positive finite measure σ such that

φμ(z) = a + ί
J—C

Observe that μ is a Dirac measure if and only if σ = 0. For σ = 4 ι r2δ0

we have that μ = 7 o ? r, the semicircle law, defined as

Jatr\

if t G [a — r,a

otherwise,



238 VITTORINO PATA

which is the noncommutative analogue of the normal law (see [10]).
A consequence of Theorem 2.3 is the following result.

Proposition 2.4. Let {/in}£!Li be a sequence of EB-infinitely divisible prob-
ability measures on R converging weakly to a probability measure μ. Then μ
is ^-infinitely divisible.

Proof. By Proposition 2.1 there exist a,β > 0 such that φμn(z) -> φμ{z),
uniformly on the compact subsets of the truncated cone Taβ. By Theo-
rem 2.3, φμn extends to a function φμn : C + -» C~ U R. Since {φμn }™=1 is
a normal family, by Montel Theorem there exists a subsequence ψμnk con-
verging to an analytic function φ : C + ̂ C ' U R . Being the restriction of
φ on Taβ equal to φμ, it follows that φμ has an analytic extension on C +

with values in C~ U R. Therefore, using again Theorem 2.3, the result is
proved. D

3. Domains of partial attraction.

In [8] we proved that the stable distributions, and only the stable distribu-
tions, can be written as limits of weighted sums of the form

where -XΊ, X2,... are free, identically distributed (f.i.d.) random variables,
Bn > 0, An £ R. Here we want to investigate the case when Zn does
not necessarily converge, but Znj does converge for some sequence nά. An
application of Theorem 2.3 allows us to assert that this limit is necessarily
EB-infinitely divisible (see Lemma 3.4 below). The much more interesting
converse result is also true: every EB-infinitely divisible distribution appears
as the limit of the sums Zn.. This result was proved in the classical case by
Khintchine [4, 5]. We proceed first with a definition.

Definition 3.1. Let qx < q2 < ... < qn be a sequence of positive inte-
gers, let {Xn}^°=1 be a sequence of f.i.d. random variables with distribution
ί/ina W*-probability space, and let {>ln}£Li a n d {#n}£Li be sequences of
real and positive numbers, respectively. Set

If for a suitable choice of the constants Bn and An the distribution of Zn

converges weakly to a measure μ we say that v is partially attracted to μ. The
set of all probability measures partially attracted to μ is called the domain
of partial attraction of μ.
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We can now state our result as follows.

Theorem 3.2. A probability measure has a non-empty domain of partial
attraction if and only if it is ^-infinitely divisible. Moreover if the domain of
partial attraction is non-empty, it contains a EB-infinitely divisible measure.

Remark 3.3. Unlike the stable law case [8], a BB-infinitely divisible law
may not belong to its own domain of partial attraction. Consider the mea-
sure defined as

β ' ^ E d t i f *€ [2-2^5,2 + 2^,
[0 otherwise.

The (^-function of this measure is easy to compute (see [10]), and it is given
by

ΦΛz) = — .

By Theorem 2.3 μ is EB-infinitely divisible. Suppose now that there exist
sequences {AJίΐLi a n d {^n}£Li of real and positive numbers, respectively,
and a subsequence {rij}^ such that

^Lφv(Bnjz) - Ani-^ φμ(z) ,

uniformly on the compact subsets of Γα/?, for some a,β > 0. In particular,
for z = iy, with y > β,

from where we get

lim
B^y2 1 + y 2 "

Therefore it follows that

lim -=A
l + y 2 '

Since the above limit must exist for all y > /3, we get that

y2

= constant , y > β ,y2

which is a contradiction.
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The proof of the theorem is carried out in the following two lemmas.

Lemma 3.4. Let qx < q2 < . . . < qn . . . be a sequence of positive integers,
let {Xn}^! be a sequence of f.i.d. random variables with distribution v in a
W*-probability space, and let {-4n}^=i and {Bn}

<^L1 be sequences of real and
positive numbers, respectively. Set

7 ^gi + + Xqn A

If for a suitable choice of the constants Bn and An the distribution of Zn

converges weakly to a measure μ, then μ is ^-infinitely divisible.

Proof. Denote the ^function of Zn by ψn. First we prove that

lim Bn = oo .
n—>oo

Indeed, by Proposition 2.1, there exist α, β > 0 such that

uniformly on the compact subsets of the truncated cone Γ ^ . If there exists

a subsequence Bn. —> B < oo, then, for every fixed z € Γ α ^,

T^oo

So the assertion is proved.
Notice further that φv is defined in

u»>0

so if we set

we get that ψn is defined in

ω>0

Note that Ωn C Ω n + 1 ,

U a. = c+.
n = l
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Let Φk = {ψn}n>k- F° r every k the family Φ* is normal, thus by Montel

Theorem there exists a subsequence ψni (with Πi = rii(k) > k) converging

to an analytic function ψW uniformly on the compact subsets of Ω,k. Since

Ψm ~> Φμ uniformly on the compact subsets of Γα)/g, by the Identity Theorem

it follows that φμ extends on flk. Since this holds for every A;, φμ has an

analytic extension on C + with values in C~ U R. Hence, by Theorem 2.3, μ

is EB-infinitely divisible. D

L e m m a 3.5. Let μ be a ^-infinitely divisible probability measure. Then

there exist a sequence {Xn}^i of f.i.d. random variables with common dis-

tribution v, a sequence of positive integers qι < q2 < ... < qn > o,nd

sequences {An)
(^=zl and {Bn}£Li of real and positive numbers, respectively,

such that B~τ (Xqi + . . .+Xqn)~-An converges in distribution to μ. Moreover,

the distribution v can he chosen to be ^-infinitely divisible.

Proof By Theorem 2.3 there exist a G R and a positive finite measure σ

such that
/"f OO \ JL. +Z

φμ(z)=a+ ——dσ(t).
J -oo Z — t

We may assume that μ Φ δa (the theorem being trivially true when μ = 5α),

and also that μ is not the semicircle law (indeed as a consequence of the

Central Limit Theorem [10], the semicircle law has a non-empty domain of

attraction). This amounts to requiring the measure σ not to be concentrated

at zero. Select s > 1 such that σ({t : s""1 < \t\ < s}) > 0. Consider the

domains Ak defined as

Ak = {ί : s~k < \t\ < sk} ,

for k = 1,2,..., and put

gk = σ(Δ*.) .

Moreover define

Ofc = / tdσ(t) ,

ch= f \t\(l+t2)dσ(t).

Let now λ x = 1 and

1 fe"1

ϊ i=l
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where ρ = σ({0}). Choose positive integers 1 = qλ < q2 < . . . < qn.
increasing so fast that the following hold.

(1)

for every j = 1,2,... , k — 1,

(2) ΣJ£ •"»-*<«,
OO

(3) Mm J f Σ t / - *Λ = 0,
v " n k=n+l

•j n-1

(4)

Finally define

Denote

1 + tz
dσ(t) ,

and

We first show that ψ(z) is the 0-function of a positive ffl-infinitely divisible
measure v. Notice that ψn{z) is the 0-function of a ffl-infinitely divisible
measure vn. Indeed this is an immediate consequence of Theorem 2.3, since
ψn(z) : C+ -> C" and

lim *M = £1
\z\->oo zGΓi Z ~* qji

the above limit being zero since ψk(z) is the φ-function of a ffl-infinitely
divisible measure. Let now K C I\ i be a compact set and let z G K (hence
in particular \z\ < M < oo). Observe that if w G Γx and t G Δ*, then

r ^ - r < V2sk ,
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therefore we get

Bk

- ί

fe=i

k=i

by (1) and (2). Therefore by the Weierstrass Test ^>n(z) converges to
uniformly on K. Let now w — x + iy £ Γi Since |a;| < y, and since

1
__ f\2 < mm< —,

we get

w-t

= \ L t ( x +v ιl+-
rf

W ~t\2

j (?\t\ + 2\t\s2k + 2y(l +12) mini ̂ , 2s2* }) dσ(t)

dσ(t)

I2s4kgk .
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Thus for z E I\ γ we have

k=l

= O(\Z\)

as z —» oo in Γ1>;1. So by Proposition 2.1, ?/>(£) is the ^function of a positive
measure v. Moreover by Proposition 2.4 υ is ffl-infinitely divisible.

Let now {Xn}^Li be a sequence of f.i.d. random variables in a Im-
probability space with common distribution v (hence φu{z) — Ψ{z)) We
want to study the behavior of the distribution of the random variable

C ^ <?i + + Xqn
71 £? '

whose associated (^-function is B~ιqn ψ(Bnz). Let K be as above, and z E K.
Observe that

Ψn(z)

where

and

n - l Bn

t B
qk

Ψk\ B

Notice that ψn{z) converges to φμ(z) — a — ρz x uniformly on K.

We examine Φ ^ ( ^ ) and Φ^2)(^) separately. Setting z = x + iy, we have

dσ{t)

< 3s
- *

rfσ(ί)
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Hence by (3)

limsuplφ^Cε) < limsup2\/2./^- JΓ J—skgk=O.

Moreover, since the above estimate does not depend on z, it is clear that

*?>(*) = o ( | z | ) ,

uniformly in n as 2r —> oo in Γ1}i. Let us now turn our attention to Φ

Notice that the following equality holds:

lBkί zBn

zBn\ Bk

Therefore we have

where

n - l

Λ n—1

q

and
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Notice that, by (4), for every z G Γ M (so in particular for every z G K),

Setting An = Cn - α, and Jn(z) — ψ£2>(z) +ln(z), we get that

Qn Qn

—ψ(Bnz) = φn(z) H h a 4- An + Jn{z) .
Bn z

Since ρn —> £, we have that

uniformly in K. Indeed, denoting

and

we get, for every z G K and n > logs M,

ψn{z) + e-± + a - φμ{z)

\ρ - ρn\ .

Since for \t\ big enough (1 + |t|M)(|t| — M ) " 1 is increasing in |t|, and

hm
\t\ - M

= M,



DOMAINS OF PARTIAL ATTRACTION 247

and using the fact that σ is a finite measure, we finally get

lim sup
z

< l imsup((l + s~nM) σ(Σn) + M σ(An) + \ρ- ρn\)

which proves the assertion. By our preceding observations we know that
Jn{z) —> 0, uniformly in if, moreover Jn(z) = o(\z\), uniformly in n as
z —> oo in Γix. To prove this fact, observe that for z G Γ l t l , we have that
Pn(*OI ^ &7i7 where kn is a sequence converging to zero, and we already
showed that Φ ^ ( z) = 0(1^1) uniformly in n as z —> oo in Γi^. Thus it
follows that

-τς-ψ\&nz) Άn Z^Z Ψμ\Z) ?

uniformly in K, and

uniformly in n as z —> oo in I \ i .
Therefore by Theorem 2.3 the sequence 5 n —An, whose φ-function is given

by B~1qnφ(Bnz) — An, converges in distribution to μ. D
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