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EXISTENCE AND BEHAVIOR OF THE RADIAL LIMITS OF
A BOUNDED CAPILLARY SURFACE AT A CORNER

KIRK E. LANCASTER AND DAVID SIEGEL

Consider a bounded capillary surface defined on a two-
dimensional region Ω that has a corner point at 0, with open-
ing angle 2a. If the contact angle is bounded away from 0 and
π, then the radial limits exist as 0 is approached from any
direction in Ω. If the contact angle approaches limiting val-
ues as 0 is approached along each portion of the boundary,
then there exist "fans" of directions adjacent to the two tan-
gent directions at 0 in which the radial limits are constant.
Other properties of the radial limit function are given and
these results are used to show continuity of the solution up to
0 under certain conditions. For a convex corner, the solution
is continuous up to 0 when the limiting angles 7Q", 7^ satisfy
fa" - 7o" - 7όΊ < 2α and 2a + \*y£ - 7 ^ < π.

1. Introduction and Statement of Main Theorems.

Consider the capillary problem

(1) Nf = κf + X in Ω

(2) Tf v = cos7 on <9Ω

where Ω is a region in JK2 with a corner at 0, 0 G <9Ω, Nf = V Γ/, Tf =
i v ^ , K and λ are constants, v is the exterior normal on 9Ω, and 7 = 7(5)

yj 1 + |V/|2

is a function of position on c?Ω,0 < 7(5) < π. The surface z = /(#,y)
describes the shape of the static liquid-gas interface in a vertical cylindrical
tube of cross-section Ω; see Finn [8] for background. The cases K > 0, K =
0, K < 0 correspond to positive, zero, and negative gravity, respectively. If
the liquid, gas, and tube are each homogeneous then 7 is constant. A general
existence theory that covers the case K > 0 is presented in [8]. This theory
provides existence of a bounded variational solution (which may be shown
to have further regularity). Theorem 4 in Siegel [27] provides existence of a
classical solution in the case κ> 0 under less restrictive hypotheses (although
the solution need not be bounded). An existence theorem for K < 0 and K,
small was given by Huisken [16].
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We are interested in the behavior of solutions to (1), (2) in the neigh-
borhood of a corner point of the boundary. We take the corner point to
be O = (0,0). Let Ω* = Ω Π Bδ*(O), where Bδ.(O) is the ball of radius
δ* about O. Polar coordinates relative to O will be denoted by r and
θ. We assume that 9Ω is piecewise smooth and that 9Ω Π Bδ*(O) con-
sists of two arcs <9+Ω* and <9~Ω*, whose tangent lines approach the lines
L + : θ = a and L~ : θ = —α, respectively, as the point O is approached
(see Figure 1). The points where dBδ*(O) intersect <9Ω are labeled A and
J5; also, Γ* = dBδ+(O) Π Ω. Let 7+(s) and 7~~(s) denote 7 along the arcs
<9+Ω* and d~Ω*, respectively, where 5 = 0 corresponds to the point O. For
0 < a < τr/2, the corner will be said to be convex and for π/2 < a < π, the
corner will be said to be nonconvex. When a = 0 or π, the region has a cusp.
The case of a smooth boundary where the contact angle is discontinuous at
the point O is included under a = π/2.

The positive gravity case (K > 0) with constant contact angle 7 and
straight boundary segments d±Ω* has received much attention. For a convex
corner (0 < a < π/2), Concus and Finn [2] showed that (a) if |π/2 — j\<a
then / is bounded in Ω* and (b) if |π/2 — 7I > a then / is unbounded in Ω*.
In case (b) they also gave the first term in an asymptotic expansion of /. The
bound on the error was later improved by Miersemann [22], [23]. Also for a
convex corner, Simon [28] proved that / is C 1 up to O if |π/2 — 7I < a and
Tarn [31] proved that / and the normal vector are continuous up to O in the
borderline case |π/2 — 7) = a. On the other hand, for a nonconvex corner,
Korevaar [17] gave examples of capillary surfaces that are discontinuous at
O, for any α,π/2 < α < π, and any 7 , 7 / π/2. The results on boundedness
at the beginning of the paragraph do not require that 9±Ω* be line segments.

In the zero gravity case (n — 0) with constant contact angle 7 and straight
boundary segments d±ft forming a convex corner (0 < a < π/2), Concus
and Finn [1] show that a solution can exist in a neighborhood of O only
if I π/2 — 7I < a. Conversely, for such an a and 7 and λ φ 0, there exists
a solution in a domain Ω with c^Ω* c L±. For λ = 0, |π/2 — 7I < a
suffices for existence. Regularity up to O holds as in the previous paragraph
whenever a solution exists. The same necessary condition for a solution to
exist also holds when Θ±Ω* are not line segments. In recent papers [3] and
[11], Concus and Finn extend their analysis to the case when 7 ± are different
constants. They show that a solution in a neighborhood of O can exist only
if |π — 7 + — 7~| < 2a. Conversely, for (7~,7+) satisfying this condition, there
is some domain Ω with corner angle 2α and a λ for which there is a solution.
If |π — 7 + — 7-1 < 2θf and 2a + \j+ — j~~\ < π then λ can be prescribed.

In the present paper, we will prove the existence of radial limits of a
bounded solution / to (1) that satisfies (2) on the smooth portions of 9Ω
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provided that 7 is bounded away from 0 and π, and for a convex corner
an additional condition is satisfied coupling 7+ and 7 " . The radial limits
of / will be denoted by Rf(θ) = limr_>0+ /(rcos0,rs in0), — a < Θ < a
and ϋ / ( ± α ) = limx_>o,χed±Ω* / ( χ ) ? χ = (#jί/)j which are the limits of the
boundary values of / on the two sides of the corner.

Theorem 1. Let f be a bounded solution to (1) satisfying (2) on d±Ω*\O,
discontinuous at O, with 0 < 70 < 7 ± (s) < 71 < π. If a > π/2 then
Rf(θ) exists for all θ E [—α, α]. If a < π/2 and there exist constants
7 ± ,7 ± ,0 < 7 ± < π/2, π/2 < 7y± < π, satisfying

7 + + 7- > π — 2a and 7 + + 7 " < 2α + π

so that 7 ± < 7 ± (s) < 7 ± /or all s,0 < s < s0, for some s0, then again Rf(θ)
exists for allθ G [—α, a]. Furthermore, in either case, Rf{θ) is a continuous
function on [—α, a] which behaves in one of the following ways:

(i) There exist aλ and a2 so that —a < c*i < a2 < OL and Rf is constant
on [—α, α x] and [α2,α] and strictly increasing or strictly decreasing on
[OLI^OLZ]. Label these case(I) and case(D), respectively.

(ii) There exist c*i, α^, α Λ , α 2 so £Λα£ —α < aλ < OLL < OLR < a2 < α, aR —
aL +π, and Rf is constant on [—α, α j , [aL,aR], and [α2,α] and ei-
ther increasing on [αi,α L ] and decreasing on [aR,a2] or decreasing on
[cti,ctL,] and increasing on [ctR,a2]. Label these case (ID) and case
(DI), respectively.

When /ί > 0, / will automatically be bounded.

Proposition 1. Let f be a solution to (1) satisfying (2) on c^Ω* \ O ; with
7 satisfying the restrictions in Theorem 1 and n > 0. Then f is bounded in
a neighborhood of O.

When the contact angle has limiting values on 9±Ω* as O is approached

then we can say more.

Theorem 2. In addition to the hypotheses of Theorem 1 assume that
l i m ^ o + T ^ s ) = 7^ both exist. Then there exist fans of constant radial
limits adjacent to each tangent direction at O: α 2 + a > 7J" or π — 7^ and
a — a2 > 7o~ or π — 7o". Which lower bound on the size of the fan holds is
described in terms of the cases labeled in Theorem 1:

θίι + a > 7<7 for (D) and (DI)
Oίi + a > π — 7^ for (I) and (ID)
a-a2>ri for (I) and (DI)
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ot - a2 > π - 7^ for (D) and (ID).

Theorem 1 is obtained by use of parametric methods first introduced
by Lancaster [18] and Elcrat and Lancaster [5] for the prescribed mean
curvature equation and Dirichlet boundary condition. The contact angle
boundary condition requires use of a different comparison principle, one
due to Concus and Finn [2]. The presentation here we hope will clarify the
method by bringing out the importance of a related problem in a region with
a cusp and by more fully exploiting a boundary behavior result of Heinz [15].

Theorem 2 is obtained by a blow-up procedure employing the concept of
generalized solution introduced by M. Miranda [24]. L. F. Tarn [30], [31]
has effectively exploited such arguments.

The proofs of Theorems 1 and Proposition 1 will be presented in Section
2. The proof of Theorem 2 will be presented in Section 3.

In Section 4 some consequences of Theorems 1 and 2 will be presented
that give conditions under which / must be continuous at O. Corollary 4
states that for a convex corner where the limiting contact angles η$ and 7^
satisfy |π — 7o~ — η$\ < 2α and 2a + \j£ — 7j~| < π, / must be continuous
up to O. The rectangle of possible pairs (7<Γ,7o") is the same rectangle that
occurs in the work of Concus and Finn [3], [11] mentioned above. Corollary
2 seems to be the first result on continuity up to a nonconvex corner point.

Section 4 also contains some illustrative examples. In particular, Theorem
3 proves the existence of a bounded capillary surface without any radial limits
with a = π/2 (and 7 not bounded away from 0 and π).

Extensions to other problems are discussed in Section 5.

2. Proofs of Theorem 1 and Proposition 1.

The proof of Theorem 1 is similar in outline to those employed in [5] for
the prescribed mean curvature equation, [18], [19] for the minimal surface
equation, and [21] for other elliptic equations, all subject to a Dirichlet
condition.

In order to deal with the contact angle boundary condition, we will make
use of the Comparison Principle of Concus and Finn (Theorem 5.1 of [8]).
We state a somewhat specialized version which suffices for our purposes. Let
Ω be a bounded domain in ΣR2 with piecewise smooth boundary Σ = dΩ.

Comparison Principle. Suppose V Tu — KU > V Tυ — KV in Ω. Let
Σ = Σ α U Σβ U Σo, where Σ α and Σ^ are unions of smooth arcs in Σ and Σo

is the set of points where the smooth arcs join. Suppose further that

υ >u on Σ α , Tv v > Tu v on Σ^, and K > 0 or Σ α φ 0.
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Then v > u in Ω and equality holds at one point if and only if v = u.

The Comparison Principle will be employed in one of two circumstances:
either Nu > KU + λ, Nυ < KV + λ and K > 0 or Nu > Nv in Ω.

Although problem (1), (2) is non-parametric, it is useful to introduce a
parametric description. Osserman [25] has other uses of parametric methods
for non-parametric problems.

The proof of Theorem 1 will now be given in a series of five steps. The
reader can get an overview of the proof by reading the statements to be
proved listed at the start of each step. The relatively brief proof of Propo-
sition 1 follows on completion of the proof of the theorem.

Let / satisfty (1), (2) and set

Let T denote the z-axis. The parameter domain will first be the unit disk
E = {(u,υ) : u2 + v2 < 1} and will then be the unit half-disk B = {(u, v) :
u2 + v2 < 1, v > 0}, whose boundary is made up to two parts:

d"B = {{u,ϋ) : - 1 < u < 1} and d'B = {(u,υ) : u2 +v2 = l,v > 0}.

Step 1. There is a parametric description of the surface SQ

X(u,v) = (x(u,v),y(u,v),z(u,v)) G C2(B : ZR3),

which has the following six properties,
(i) X is a homeomorphism of B onto SQ.

(ii) X maps d'B strictly monotonically onto ΓQ.

(iii) X is conformal on B: Xu Xυ = 0, X2

U = X2 on B.

(iv) AX := Xuu + Xvv = (KZ + \)XU x Xυ.

(v) X e C° ("B) and x = y = 0 on &'B.

(vi) Writing K(u, v) = (x(u1 υ),y(u, t;)), K(cos t, sint) moves clockwise abo-
ut 9Ω* as t increases, 0 < t < π, and K is orientation reversing on
B.

Proof of Step 1. Following the proof in [5], from the existence of local
conformal coordinates and the uniformization theorem, it follows that there
is a global parametric description of SQ : Y(u, v) e C2(E : IR3),Y satisfied
(iii) and (iv). Next, we show that the area of SQ is finite by an integration
by parts argument (used in a different context by Finn, Lemma 5 in [6]).
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Since / is assumed to be bounded then Nf is also bounded. Multiply by /
and use the Divergence Theorem:

fNf dx = - I , I > J I dx + φ f Vf'U ds.

Since the boundary integral is bounded, so is the first integral on the right
hand side. Hence

+ |V/|2 ώ; = / . 1 <fo + / , ^ dx
M Vi + |v/|2 7nS vΊ + iv/|2

is bounded.
Set Y(u,υ) — (α(iA, v),fe(ϋ, V),C(IA, v)),G(ii,υ) = (a(u,v),b(u,v)). Again

following [5], since the Dirichlet integral / JE G2

U + G2

V dudv is twice the area
of SQ, and hence is finite, it can be argued that G G C° (E : ΣR2) . Define σ
to be subset of dE which G maps onto <9Ω* \ O. It can then be argued that
σ is a connected arc of dE and Y maps σ strictly monotonically onto ΓQ.

Now, we prove Y G C° (E : ZR3J, which comes down to showing that

c(u,υ) G C° (EJ . To do this we use the Courant-Lebesgue Lemma (Lemma
3.1 in [4]) and appropriate comparison functions to control the oscillation of
c(u, υ) on E Π Dδ where Dδ is any disk of radius δ. Since / is bounded then
I ft/ + λ| < 2iϊ0, #o a positive constant. Let Λ4 denote the set of continuous
strictly increasing functions from the positive reals to the positive reals which
are zero at zero. Moduli of continuity will be chosen in this class.

Let e > 0; δ > 0 will be chosen below. For u0 — (v>o,υo), set Br =
| u e ϊ? : | u - u o | < r} ,Cr = | u G ~E \ |u - u o | = r | ,Er = dBr\Cr and let
Zr be the length of the image curve Y{Cr). Also let C'r = G(Cr), B'r = G(Br)
and E'r = G(Er). The Courant-Lebesgue Lemma asserts that there is a
function p(ί) G Λί, and a number p,δ < p < Vδ so that Zp < p(ί). (The
function is p(δ) = k/yj\n(l/8), for some constant A;, taking ί < 1.)

The cases α > τr/2, α = π/2 and α < π/2 require separate treatment.
Consider the case a > π/2. Let 70 = min{70,π — 71} and choose 7Q,0 <

7o < 7o Let L^ denote the tangent lines to c^Ω*, respectively and let
eft be the signed distance from x = (x,y) to L^ where dft > 0 for points
on the positive x-axis. Let h± = h^dft) be a the portion of a cylinder
with mean curvature —Ho with domain the strip S^ — {x : —d\ < d± <
d2},d1 = £ ^ α , d2 = 1"ffp7° making a contact angle η'o on L^1 with respect
to the direction of negative d± (see Figure 2). Since c^Ω* are C1 we can
choose δ* so that Tϊft v > cos 70 on c^Ω*, respectively. Let h = h(f)
denote an unduloid surface (see for example [9]) defined on the annulus
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A = {x : ri < r < r2} with constant mean curvature — Ho that becomes
vertical at r = Γi,r2, where r is the distance from x to (—7*1,0) and rλ =
i-Vi-f4coifo?r2 = i+vi+4c0Hp> C b i s a r b i t r a r y __L_ < Co < 0, (see Figure 3).

(The inclination angle ^ is given by sin^ = —Hof + ^.) Let /ι denote an

upper hemisphere of radius ~- defined over a disk of the same radius. In view

of the Comparison Principle the functions h± + k,h + k and h + k, where A: is

a constant can be used to give upper bounds on /. Similarly, the functions

—h*1 + k,— h + k and —h + k can be used to give lower bounds on /. Let

moduli of continuity of the functions /r^/i, Λ, be <7+,#,#, respectively. This

means that |/i(xi) —/ι(x2)| < </(|xi — X2I), with the analogous statements for

the other functions. The moduli of continuity are all taken to be in M.

Let σN be the portion of σ corresponding to d+Ω* U d~Ω* and let σD be

the portion of σ corresponding Γ* = dBδ* Π Ω. Also let σ0 = dE \ σ. There

are five cases that can occur, depicted in Figures 4a, 4b, depending on the

position of Cp relative to σN,σD,σ0. In Figure 4a, σ0 is the closed arc from

θχ to o2, in the counterclockwise direction; in Figure 4b, σ0 is the point o.

In both figures, α and b are the points corresponding to A and B shown in

Figure 1. In the case when σ0 is an arc, take δ sufficiently small so that p(δ)

is smaller than the distance between the two components of σw, so that the

end points of Cp cannot be on different components of a^.

Case 1: Cp C E or Cp Π E consists of one point. Consider the image of

Dp,D'p. Since lp < p(δ) then D'p is contained in a disk of radius p(δ) and

center c. Let h = h(rc),rc = |x — c| be an upper hemishpere, as described

above. Take δ suficiently small so that p(δ) < ^ . The oscillation of / over

D'p can now be bounded in terms of the oscillation of / over C'p by use of

the functions ±/ι + k: from the Comparison Principle one has

inf / - h< f < sup / + h on D'
C'P C'p

where h is chosen to have a minimum 0 on r c = p(δ). It follows that

(3) supc — inf c < supc — inf c < sup/ — inf / < 2q(p(δ)) +p(δ).
B B B B B' B'Bδ

 Bs Bp

 B* B'p

Case 2: Both endpoints of Cp are on σD. Let qD be a modulus of continuity

for / relative to IV. Arguing as in Case 1, one has

inf / — h — inf / < / < sup f + h + sup / on D'p,

from which follows

(4) supc - inf c < sup/ - inf/ < 2q(p{δ)) +p(δ) + qD(p{δ))
Bδ

 Bs Bp
 BP
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Case 3: One endpoint of Cp is on σ^ and the other is on either the same
component of σ^ or is on σ0. In this case for δ sufficiently small so that p(δ) <
min{di,d2} then G(BP) is contained either in S4" or 5~. The oscillation
of / on G(BP) can now be bounded by use of the functions h±. By the
Comparison Principle one has

i n f / / ^ < / <su on D'

where /ι± has a minimum 0 for r* = p(δ). It follows that

(5) s u p c - inf c < sup/ - inf/ < 2q+{p{δ)) +p{δ).
BS

 B* B'p B'p

Case 4: One endpoint of Cp is on σ^ and one is on σ^. As in Case 3, take
δ small enough that p(δ) < min{di,d2} Arguing as in Case 3, we obtain

inf/ - Λ± - inf / < / < sup/ 4- Λ* + sup / on D'
c? E'pnΓ* cp E'pnr*

from which follows

(6) supc - inf c < sup/ - inf/ < 2q+(p(δ)) +p(δ) + qD(p(δ)).
Bδ

 B* B'p
 B'P

Case 5: σ0 is a single point p and one end point of Cp is on each component
of σN. Take δ so that p(δ) < min{c?i,d2,r2 — ri}. The region B'p consists of
three parts: IΛ = B'pΠΛ, I* = B'JTWl*1 where U^ = {x : r < ru 0 < ±y}; see
Figure 5. First bound / on J4 by use of h which is chosen to have minimum
value 0 for f = ri +p{δ). By the Comparison Principle, using that Th v = 1
for r = r l 5 we have / < supC/n Λ f + h < sup c , n Λ / + h(O) on 7^. Now
since 7± C 5̂ ,̂ / on J* can be bounded by use of /i^, which are chosen to
to have minimum value 0 on d± = p(δ). By the Comparison Principle and
the previous bound, we have

/ < sup / -f h^ + h(O) < sup/ + h(O) + h~*~(O) on 7±,
C'pns± C'p

and a similar bound from below,

/ > inf f-h(O)-h+(O) on I±.

It follows that

(7) supc - inf c < sup/ - inf/ < 2[q{p(δ)) + q+{p{δ))} +p{δ).
Bδ

 B* B'p
 BP



RADIAL LIMITS OF CAPILLARY SURFACES 173

Let q(δ) be the maximum of the right hand sides of (3)-(7), and choose
δ = q~x(e). Then supB ί c — inf^ c < e, giving the continuity of c.

The case a — π/2 is simpler than the case a > π/2. There is no need for
an unduloid surface and only one boundary strip S = S* is necessary.

In the case a < π/2 , Cases 1-4 are exactly the same as above. In Case 5,
the oscillation of / is bounded by hemispheres ±h positioned in a manner to
make an appropriate contact angle condition with d^Ω*. This is done in the
following way. Let h be defined on -D(c), the disk of radius HQ1 and center c.
Let C = dD(c). Choose constants 7*, 0 < 7^ < 7*, so that 7^+7^ > π-2a.
Choose c = (cϊyc2) so that C makes an angle 7^ with L~; see Figure 6.
Moving c parallel to L~, while decreasing ci, we see that the angle C makes
with L+, β decreases and approaches π — 2a — j ~ . Thus there is a c for
which β < 7+. Fix this position of c. Let C = 2?(c) Π Ω*. For δ sufficiently
small B'p C C. Further, as δ -> 0,C -» O, so that dist(C^,O) < g(δ) with
g G M. (In fact, g can be taken to be linear in δ.) Fix h by requiring h — 0
for rc = g{p{δ)) + \c\. Now

Th'V > cos 7=*= on ^ Ω *

sufficiently close to O. Thus, by the Comparison Principle

/ < s u p / + 7ϊ on B'

which implies supB, / < supc, / + h(O). Similarly, inf^ / > infĉ  / - h{0).
Therefore

(8) supc - inf c < sup/ - inf / < 2q(p(δ)) +p(δ).
Bδ

 B* B'p
 BP

Thus c is continuous in all cases.
Finally (following [5]), when σ0 is a single point, G is a homeomorphism

from E to Ω , and G~λ is also a homeomorphism. Since / = co G"1, then
/ must be continuous at O. By hypothesis, this is not the case so σ0 must
be an arc. By a conformal transformation we can arrange to have B as the
parameter domain and σ0 = d"B, and satisfy the orientation convention
(vi). The proof of Step 1 is complete. D

Step 2. X G Cltβ(B U d"B) and there is at most one branch point (a point
where Xu = Xυ = 0) on d"B, and this occurs only if zu = 0 at some point
of d"B.

Proof of Step 2. Introduce complex notation: w = u+iv, Xw = Xu — iXv. By
a result of Heinz [15] X G Chβ(BUd"B : IR3) and about a branch point w0 G
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d"B there is an asymptotic representation Xw = a(w — w0)
1 + o(\w — wo\

ι),
where a = (αi,α2,θ3) is a non-zero complex vector with ]ζα? = 0. Since
x{u,0) = y{u,0) = 0, then xu(u,0) = yu(u,0) = 0 and by Xu Xv = 0,
zv(u,Q) = 0. Therefore, (ΪXO,0) is a branch point only if zu(uo,0) = 0.

Writing α̂  = b{ + ic^ bi and c* real, we have

(9) &;-c? + &2-c2 + δg-cg = O

and

(10) 6χCi + 62c2 + b3c3 = 0.

Prom xu(u,0) = yu(?/,0) = 0, we have 6χ = b2 = 0 and from zυ(u,0) = 0 it
follows that c3 = 0. We note that (10) is automatically fulfilled. Also, (9)
implies that b\ = c\ + c\ and 63 ^ 0. Using the asymptotic representation, a
calculation gives

TVT

\XU v | V|ί>3| |ί>31 /

for the downward pointing normal N to the surface.
Let rp and θp be polar cordinates in the parameter domain £?, relative to

the point WQ. The asymptotic relation for Xw can be integrated to yield

x = R e
 Γ Γ T ^

from which we deduce that

We now show that 1 = 1. Suppose that / > 1. Consider the behavior of
y(w) on rays through w0, ΘP = θj, θj = π

2ffi|^ >i = 1? 2,3. Take, for the sake
of argument c2 < 0, then y is positive on θp = ^1,^3, for rp small, and y is
negative on ΘP = θ2, for r P small. This is impossible. Therefore 1 = 1.

Let L be the line through O in the direction of (ci, c2); its inclination angle
with the positive a -direction is ΘR. Since (x, y) as a function of K; for rP fixed
is arbitrarily close to L, for small rp, we can pick angles ΘL , 0R, ΘR = ΘL + π
with — a < ΘL < ΘR < a. (By considering the image of a small half-disk
about O under K, which is orientation reversing, we see that c2 < 0.)

Now consider the images of vertical lines Lj given by w = u^j = 1,2, for
Uι < u0 < u2,uι and u2 close to u 0, and υ small, starting at υ = 0. Prom
the asymptotic representaion (xv,yυ) — (ci,c2)rP cos0p + o(r P ) , we see that

(xv(u,0),yv(u,0)) = -(u - uQ){cuc2) + o(\u - uo\)
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for u close to u0. Define Θ(u) = aig(xv(u,0) + iyv{u,0)), where the angle is
chosen in the interval [—α, α]. We have that

(12) Θ(u) -> θR as u —> u0 + and θ(u) —> ΘL as u -* u0 — .

That θ(u) is an increasing function of u follows from the fact that the map
K is orietation reversing (this is the main reason for requiring (vi) of Step 1).
Thus the image of SΊ2, the set of points of B between the lines Lx and L2,
must contain the rays ΘL + e < θ < ΘR - e for 0 < r < ro(e),Ve > 0. Any
other branch point would have to have a different corresponding half-space
of directions. This is impossible. Therefore, there can be at most one branch
point on d"B. D

Step 3. Q(u) = aig[xυ(u,0) + iyυ(u,0)] is continuous except at a branch
point (u*,0) € d"B, limu^u*+ θ(u) = limu_yu*_ θ(ϋ)+π, and θ(u) is strictly
increasing.

Proof of Step 3. Prom Step 2, θ(u) is defined except at a branch point
and is an increasing and continuous function. When there is a branch point
the limit relation must hold. We now show that θ(u) is strictly increasing.
Argue by contradiction. If Θ were not strictly increasing there would be an
interval [ϊii,w2] on which Θ is constant. We may take uλ > u* or u2 <u*.

By the Implicit Function Theorem, there are level curves Cj of z(u, v)
through (ι*j , 0),j = 1,2, near these points. Let V be the set of points between
Ci and C2 for 0 < υ < vu vλ sufficiently small, and let V = K(V) be the
image of V. Let dV = I\ UΓ2 UΓ3 with Γj C Cό, j = 1,2. Since zu{u, 0) φ 0
for u G [uuu2],z(uι^0) φ z(u2,0). Hence / satisfies

f = Cj on Γ, .7 = 1,2

where Ci and c2 are different constants and Γx and Γ2 have the same direction
at O. We now show that / cannot exist. The reasoning is different for
the cases n > 0, K = 0, and K < 0. The surface z = f(x,y),{x,y) £ V,
when described parametrically is smooth up to T (the z-axis), contains the
segment ZλZ2,Zj = (0,0,Cj)J = 1,2, and the tangent plane to any point
on this segment is a vetical plane V.

Suppose K > 0. Take cx < c? to fix the notation. Since the curvature of T
is zero, the curve Γj has curvature kj = —{KCJ + λ), j = 1,2, at O relative to
the xy-projection of the downward pointing normal Nρ = (Ni(0),N2(0)).
Since hi > k2 and Γi and Γ2 are both orthogonal to No,Γi lies above Γ2,
relative to the the direction No> near O. It is seen that the xy-projection of
the downward pointing normal V//V1 + |V/|2 tends to - N o , as x -> O,
giving a contradiction.
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Suppose K = 0. One can argue as follows (see [21]). Look at the surface
near T as the graph of a function g(τ, z) defined on a rectangle R = [0, b] x
[ci,c2] in the tangent plane V. We have that g satisfies a Cauchy problem:

Ng = X in R

g = 0 and gT = 0 for r = 0.

This problem has a unique solution g = g(τ) which is a cylinder, which
implies that / must represent a vertical cylinder, a contradiction.

Suppose K < 0. Again rotate the problem as for K = 0. By the Cauchy-
Kovalevskaya Theorem, there is a unique solution to

Ng = κz + X in R= [0,b] x [ci,C2]

ff = 0,#r = 0 for τ = 0,

for 6 sufficiently small. Now let # be the solution to the same problem with c2

replaced by d2,d2 > c2. Choose d2 larger than the assumed bound on /. The
surface given by g projects simply onto the xy-plane for b sufficiently small,
since the curves z = zo,zo E [CI,GJ2] have the same tangent direction but
different curvatures — (κz0 + λ) for r = 0. Let 2 = F(x,y) be a description
of the surface given by g. The domain of definition is a "larger" cusp region
V: Vp D Vp, where Vp = V Π BP(O) and Vp = V Π BP(O). Choose p so that
Vp C Ω*. Then / = F but F achieves the value d2 at some point, giving a
contradiction.

Step 4. Let ωβ(t) = K^itcosθ.tsinθ). Then
exists for θ E (—α, α), and U(θ) is continuous and increasing in 0, and
lim0_>±α U(θ) = ±1. This implies that Rf(θ) exists and is continuous.

Proo/ 0/ /Step 4. We first show that lim^o-f ω(ί) exists for 0 E (—α,α).
The second coordinate of ωθ(t) tends to zero as t -> 0+, so that if ωθ(t)
does not tend to a limit, then it must have an interval of limit points on
d"B,Z — {(^,0) : U\ < u < ti2},Ui < u2. Take I to contain no branch
point. Let Li be the vertical line through (^,0),^ = 1,2,^ < u[ < u'2 < u2.
We must have that ωe(t) intersects L\ and L2 infinitely often for t E (0,ίo)5

for any t0. The image curves L\ — K{Lι) have inclination angles Q{u\) at
O,Θ(tii) < θ(u2). Thus the straight line (£cos0,ίsin#),O < t < t0 cannot
intersect both Lλ and L2 for t0 small. This is a contradiction. Therefore
U(θ) exists.

Next, we show that U(θ) is an increasing function. Consider the region
R' = {x : 0! < θ < 02,0 < r < r0} for small r0. The image of R' under K~ι

must have U(θ2) > ?7(0i), since UΓ"1 is orientation reversing.
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We now prove that U and Θ are inverse functions:

(13) U(Θ(u))=u for u G (-1, ΐ),u Φ u0.

If there is no branch point then (13) holds for all u G (—1,1).

Suppose that U(Θ(uχ)) > tti,tti Φ u0. Take u2,uι <u2 < U(Θ(uι)),u2 Φ
UQ. Then Θ(u2) > Θ(uι). Consider L1,L2 as above and their respective
images L'UL'2. But L'2 should be between the line θ = θ(uι) and the curve
L[, for 0 < r < r o,r o small, giving a contradiction. The argument is similar
if I7(θ(ui)) < iii, tii φu0.

Let θίχ = limw_>_1+ θ(u) and a2 = lim^^i- θ(u). Clearly, — a < a\ <
a2 < a and aλ < aL,aR < a2 if there is a branch point. Statement (13)
implies that U(θ) is continuous and strictly increasing on (α1 ? a2) in the case
of no branch point on d"B and on (α^α^) U (α Λ ,α 2 ) if there is a branch
point on d"B. Since U(θ) is increasing, by (13) lim^_^αi+ U(θ) = —1 and

2_ U(θ) = 1. Therefore, U(θ) = - 1 for θ G (-α,αi] and U(θ) = 1 for

In the case of no branch point, U(θ) is continuous on (—α, α), constant
on (—α, αx] and (α^α) and strictly increasing on [«i,α2].

In the case with a branch point, from (13) and (12), U(ΘL) = u0 and
U(ΘR) = no and therefore 17(0) = u0 for θ G [0L,0Λ] We thus have that
U(θ) is continuous on (—a,a), constant on (—α,aχ\ and [0:2,«], and strictly
increasing on [αi,α2].

Now Rf(θ) = ^ m / ί α ^ί)) = z(t^(0)) for θ G (-α,α) and

lim /(x) = lim 2r(cos<i,sin(ί)) = ^(1,0)

lim /(x) = lim z(cos</>,sinώ) = 2r(—1,0).

We see that Rf(θ) is continuous for θ G [—α, cv].
As a convenience we extend the definition of U(θ) so that U(±a) = ±1.

Then Λ/(0) = z(t/(0)) for all 0 G [-α, α]. D

Step 5. When there is no branch point on d"B case (I) or case (D) holds.

When there is one branch point on d"B case (ID) or case (DI) holds.

Proof of Step 5. The proof follows easily from results established in Step 4.

Recall that Rf(θ) = z(U(θ)) for all θ G [-α,α].
Suppose that there is no branch point on d"B. Then either zu > 0 or

zu < 0 on d"B, and these give case (D) and case (I), respectively.
Suppose that there is a single branch point (txo,0),—1 < uo < 1. Then

either zu(u, 0) > 0, for u < u0 and 2w(u,0) < 0, for u > u0 or zw(n, 0) < 0,
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for u < u0 and zu(u,0) > 0, for u > u0. Prom the behavior of ί/(0), we
obtain either case (ID) or case (DI), respectively.

The proof is complete. •

Proof of Proposition 1. The cases K = 0 and ft > 0 are handled differently.

Suppose ft = 0. Since Nf = λ, the mean curvature has a positive upper
bound Ho as was needed in Step 2 of the proof of Theorem 1. The same
comparison functions give a bound on / in Ω* in terms of a bound on / on
Γ* = dBδ* (O) Π Ω. Since / is assumed to be smooth up to the boundary,
except for corner points, this latter quantity is bounded.

Suppose ft > 0 and a > π/2. We no longer know that Nf is bounded.
However, a lower hemishpere h of radius ί, defined on Bδ(P), whose lowest
value is h(P) = ^δ — £ will satisfy a supersolution condition Nh < fth + λ.
Choose δ so that each point in a fixed neighborhood of O, Ω', is in some disk
Bδ(P) which is either contained in Ω* or meets one of 9±Ω* and satisfies
Th v > cos7o on c^Ω*. The reasoning is similar to that given in the proof of
Step 1 of Theorem 1, where h*1 + k are used as comparison functions. By the
Comparison Principle, / < ~ - £ + δ for x G Ω'. Similarly, / > — ^ - £ - < J
in Ω'. This gives us that / is bounded in a neighborhood of O. (If c^Ω* are
assumed to be C2 up to O then only disks Bs(P) which are contained in Ω*
are needed. The present argument requires that c^Ω* be C1 up to O.)

For a < π/2 the argument is similar to one used in the proof of Step 1,
Case 5 of Theorem 1. Constants 7^,0 < 7^ < 7 ± , are chosen so that
χj~ + τ~ > π — 2a. Choose a ball ^ ( c ) so that its boundary circle goes
through O and makes an angle 7^,0 < 7^ < 7", with L~, the tangent line
to <9~Ω*, see Figure 7. Then, the angle β that dBδ{c) makes with L+ is
β = π — 2a — 7^. This implies that β < 7+. Now the lower hemisphere h
defined above is a supersolution that satisfies Th u > c o s ^ on d± Ω*Πβ(j(c),
for δ sufficiently small. Thus, by the Comparison Principle

7 δ<f< — - - + δ
no n ftd ft

on Bδ(c)Γ)Ω*.
The proof of Proposition 1 is complete. D

3. Proof of Theorem 2.

The proof of Theorem 2 is similar in outline to that employed in §2.2-2.3
of [29] for capillary surfaces with nonnegative gravity and constant contact
angle in piecewise smooth domains which have convex corners. Since we
are interested in nonconvex as well as convex corners, variable contact angle
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(which need not be continuous), and negative as well as nonnegative gravity,
some details in [29] require modification.

We first require a more general version of Lemma 6.1 of Finn [8]. As in
[8], p. 141, consider Ω as a metric space with distance function d(p, q)=
infinum of Euclidean lengths of curves joining p to q in Ω and suppose its
closure Ω is covered by a (finite) partition of unity with certain properties.
In particular, we suppose Ω is covered by N open (in Ω) sets Ω; and each
set Ωi is associated with a function ψi G C£°(Ωi) such that 0 < ψ{ < 1 and
^iLi Ψi — 1 on Ω. Further, we assume:

i) There is a finite (possibly empty) set of points P c Σ ( = dfi) and an
associated integer Np < N such that P = {pk : k = Np + 1 , , Np +
K} with K < N - NP, Σ Π Ω, φ 0 for each j < NP, the set Σ, =

is open and connected in the relative topology of Σ, and Σ\P =
I \Np V
ui=i ^i

ii) For each k = Np + 1, , Np + K, we have pk G Ωfc, pkfc Ωj for
j Φ k, 1 < j < iV, and Σk = Σ Π Ω* φ 0 meets exactly two (adjacent)
sets Σ j 5 1 < j < NP (see Fig 6.8 of [8]).

iii) There exists r > 0 such that Σj (j = 1, >Np) can be represented
(after a rigid motion Fj : IB? —>• JK2) over some interval a,j < x <
bj with dj < Q < bj by a Lipschitz function y = ψj(x) such that
ψj has Lipschitz constants L~ on [βj,0] and L+ on [0,6̂ -], the set
Tj = {(x,y + ψj(x)) ' cίj < x < bj, —τ<y<0} l i e s i n Ω , a n d ,
if Ji,J2 £ {!,-•• ? ^ p } with ji ^ j'2 and pk e Ωh Π Ωi2 for some
ke{NP + l,'" ,Np + K], then ThnTJ2 = 0 .

The points pj, 1 < j < NP, will be our "convex cornvers" and p^, NP + 1 <
j < AΓp + if, will be our "reentrant or nonconvex corners."

Lemma 1. Under the above conditions, let β be a bounded measurable
function on Σ and, in the notation 0/ iii), let βf = ess. sup | β(x,ψj(x)) |

0<x<bj

and β~ = ess. sup | β(x,ψj{x)) \ for j = 1, ,Np. Let Λδ C Ω be the
a,j<x<0

strip of width δ adjacent to Σ7 i.e.

As = UJ2! F7* ({(x,y + ^(x)) :aά<x< bά, -r<y< 0}).

Then for any f G BV(Ω), there holds

\ ί βfds <μf \Df\ + Ύ(ίl,δ) ί I/I;

here μ = max{β-^fl + {L,)2 , βfjl + (Lj)2}, taken over all
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i G { l , , NP} for which Ω, Γ\ΛδΠ supp / φ 0.

The proof of Lemma 6.1 of [8] begins by considering fj = fψy When j >
Np, the proof of Lemma 1 is the same as that of Lemma 6.1. When j < Np,
we see that applying Finn's argument separately to Σ+ = Ff1({(x^φj(x)) :
0 < x < bj}) and Σj = Ff({(x,ψj(x)) : a,j < x < 0}), we obtain in place
of (6.18), [8],

j ds _ \Df\ Ψj

[
AsΠΩf

where Ω t = Ff1({(x,y + φj(x)) : 0 < x < b j , τ < y < 0}), etc. Lemma 1

then follows in the same manner as does Lemma 6.1 of [8].

Let us consider the proof of Theorem 2.

Step 1. We will assume α < | , 7ό~ < f, 7o~ < §, and case (D) of Theorem 1
holds and prove Theorem 2 in this case.

Notice that 70* > 7 + and 7^ > 7" and so 70" + 7̂ " > 7"1" + 7" > π — 2a.

Also, 7o~ < 7 + and 7^ < 7 " and so 70" + Ύo < 7 + + 7~ < π 4- 2α.
Let 0 < σj < f (j = 1,2) such that σx + σ2 = π — 2α, σx < 70", and
&2 < 7o" Rotate Ω about O through an angle of π — σi — α; let us denote
by Ω,/,7, etc. the sets, functions, etc. obtained from Ω,/, 7, etc. by this
rotation. Then dVt is tangent to the rays θ = σ2 and 0 = π — σi at O. Let
Έj = {(x,y) e dClD Bδ*(O) : ( - 1 ) ^ < 0} be the graph of a (Lipschitz)
function φj(x), j = 1,2. If we choose δ* > 0 small enough, we may assume
the Lipschitz constants Lj of φ^ j = 1,2, satisfy

L\ < |tan(7o~)| and L2 < |tan(7o~)l

Let (0,0,2) belong to the closure of the graph of / and let {ê } be any

sequence in (0,1) converging to 0. Set Ω̂  = j(#,2/) G IR2 : (e^x^e^y) G ΩJ

and define fά G C°° ( Ω ) by

1
j χ,y - ^

for (x,y) G Ωj. Let 7̂  be defined on dΩ,j\O by Ύj(x,y) = 7(6^0;, ê y) and
let ί/j = Vj(x,y) denote the outward unit normal to dCij. Then fj satisfies
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the capillary problem

Nfj(x,y) = e KfiejX, e, y) + e^λ, (a?,y) e Ω,

Γ/ ί^ ) on dΩ^O.

Set ΩQO = limΩ, = {(rcos(0), rsin(0)) : r > 0, σ2 < θ < π - σ j . If we
J—»OO

argue as in §2.2 of [29] and in [30], using our Lemma 1 in place of Lemma 1.4

of [29] and, for example, using an appropriately modified version of (2.13) of

[29], we can find a subsequence of {/?}, which we continue to denote {/j k

which converges locally to a generalized solution /<» (in the sense of Miranda

[24] and Guisti [14], [13]) of the functional

foo(g) = / / Jl+ I Dg | 2 dx- cos(7+)# ds - cos(%)g ds,

Ωoo

where Σ ^ = {(rcos(π — σx), rsin(π — σx)) : r > 0} and Σ ^ = {(rcos(σ2),
rsin(σ2)) : r > 0}.

Let us now define the sets

V = {(s,y) G Ωoo : f<x>(x,v) = oo}

and

•Λf = {(x, y) e Ωoo: /oo(«, y) = -oo}.

These sets have a special structure which follows from the fact that V min-
imizes the functional

Φ(A) = / / I DχA I -cos(7o

+)

= ^(Ωoo Π ΘA) - cos(70

+)iί1(Σio Π βΛ) - cos(70-)^1(Σ2

oo Π ΘA)

and λί minimizes the functional

Φ(A) = / / I DχA I +cos(7o

+) / XAdH1 + COB(7O") / X ^ i ί 1

= if^Ωoo Π βA) + cos(7o+)firl(Σ00 Π ΘA) + cos(%)Hι&

in the appropriate sense (e.g. [8], [13], [30]). After modification on a set of
measure zero, we may assume that dV Π Ω^ and dλί Π Ω^ each consists of
straight lines which do not intersect inside Ω^ (e.g. [30]).
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We claim that Rf(-) has a fan of constant radial limits of width 7^ ad-
jacent to θ = —α; this equivalent to Rf(θ) = Rf(—a) for each θ G [σ2, λ]
with λ — σ2 > 7cΓ Recall that we are in case (D) and choose our blow-
up point (0,0,2) such that z = Rf(X) for some λ G (σ2, TΓ — σi) with
Rf(π - σi) < Rf(λ) < Rf(σ2). Notice then that Theorem 1 implies

V = {(rcos0, rsinθ) : r > 0, σ2 < 0 < λ}

and

Λf = {(rcos0, rsin0) : r > 0, λ < 0 < π - σλ}.

We shall show that the fact V minimizes Φ( ) implies V is a sector of angle
at least 7^ and so λ > σ2 + 7J". Since this will hold for all λ G [σ2, π — σi]
for which Rf(\) < i?/(σ2), we see that Rf(-) is constant on [σ2, 02 + 7ό~]

As in [30] and [31], we see that

V = {(rcos<9, rsin0) : r > 0, σ2 < Θ < σ2 + β}

for some β > 0 (see Figure 8). Now let δ G (0, f) and let

Vδ = {(rcosfl, rsinfl) : σ2 < θ < σ2 + /3, r > ^ ™ ( f f

be the portion of V remaining after removing the triangle with interior angles
/?, δ, and π — (β + δ) and side length 1 on 0 = σ2 + β as indicated in Figure
8. If we label the length of the side of the triangle on 0 = σ2 by e and the

length of the remaining side by 6, then e = . , . _x and b — . —.
sm(p + oj sin(p-ho)

Since P minimizes Φ( ), we see that Φ(V) < <$>(V&) in the sense that

Hι(dv n Ω^ n BR(O)) - cos(7o

+)tf'(Σ^ ndvn BR(O))

-cos^H'&lndVnBniO))
< H\dvδ n Ω ^ n BR(O)) - cos(7o

+)firl(Σi0 n ap, n

for each R > sec(/3). In this case, we obtain

^") < b or sin(/5 + δ) — si

rτ,i / x sin(β + δ) — sin()9) / Λ X . . _. cos(5) 1 τ r x ΊThen cos(70") > — v . 7

/ f , ^ ^ = cos(/3) + sin(/J)—. ^ • If we take
sm(oj sm(()J

the limit as δ -» 0+, we see that cos(7^) > cos(y9) and, since 0 < 7^, β < f,
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β > 7cΓ A similar argument for the set Λ/*, which minimizes Φ( )> shows
that λ < (π - σi) - (π - 7^) = 7^ - σx if Rf(λ) > Rf(π - σx) and so Rf( )
is constant on [π — σ\ — (π — 70"), π — σi]. This completes Step 1.

Step 2. Suppose a < f. Notice the condition

π - 2a < 7̂ " + 7<7 < π + 2a

implies that there exist angles σ1? σ2 E (0, | ) such that σλ + σ2 = π — 2α,
σx < m i n ^ , π - 7^), and σ2 < m i n ^ , π - 7^) and so, setting 71 = 7^
and 72 = 70",

I cos(7j) I Y1 + tan2(σj) < 1.

The proof in Step 1, with slight modification, then yields the existence of
fans adjacent to θ = σ2 and θ = π — σx of the appropriate size.

3. Suppose a > | . Then the existence of fans as indicated in Theorem
2 follows as in Steps 1 and 2 after observing that we may consider the two
sides of a reentrant corner separately and so obtain in, for example, (1.18) of
[30] and Lemma 1 Lipschitz constants L arbitrary close to zero. The proof
then follows (without any need for angle conditions).

The proof of Theorem 2 is complete. D

4. Further Results and Examples.

This section contains applications of Theorems 1 and 2 and illustrative ex-
amples. We start with two corollaries of Theorems 1 and 2 where 7 has the
same limit 70 on both sides of the corner (which includes the situation in
which 7 is constant).

Corollary 1. Let f be a bounded solution to (1) satisfying (2) on
with 70 = lims_>0+7+(s) = lims_κ)+7~(s),0 < 70 < π. Then for a > π/2,
case (ID) cannot occur when a + 70 < ψ and case (DI) cannot occur when
OL < 7o + τr/2. For a < π/2 and |π/2 — 7o| < a or if a = π/2 then f must
be continuous up to O.

Proof. Suppose that a + j 0 £ ψ and case (ID) holds. Then by Theorem 2,
a — a2 > π — 70 and a\ + a > π — 70. This leads to the contradiction
2a > 2(π — 70) + π. A similar argument shows that for a < j 0 + π/2 case
(DI) cannot hold.

For a < π/2 suppose that / is not continuous at O then either case (I) or
case (D) holds. For case (I), by Theorem 2, α — α2 > 70 and ax +a > π — 70.
This leads to the contradiction 2a > 70 + (π — 70) = π. D



184 K.E. LANCASTER AND D. SIEGEL

This can be applied to Korevaar's example [17].

Example 1. Let K > 0, λ = 0,7 is constant 0 < 7 < π/2,α > π/2. Let Ω
be the region depicted in Figure 9. For e sufficiently small, the solution / to
(1),(2) is discontinuous at O since a lower bound on / in Ωi is greater than an
upper bound for / in Ωo. Thus Rf(—a) > Rf(cx) and case (D) cannot hold.
By Corollary 1, case(ID) cannot hold and under the assumption a < η+π/2,
case (DI) cannot occur. We may conclude that case (D) holds provided that
a < 7 + π/2.

Corollary 2. Let Ω be symmetric about the x-axis, a > π/2,7(2;, — y) =
7(x, y) for all x E 5Ω, and 70 = lims_>0+ Ί+{s) = lims_>0+ 7~(5)> satisfying

a - π/2 < 7o < π/2 or π/2 < 70 < 3π/2 - a.

Let f{x,y) be a bounded solution to (1), (2) that is even in y. Then f must
be continuous up to O. The condition on the symmetry of f is automatic
when K > 0.

Proof. When K > 0 (K = 0), the Comparison Principle guarantees a unique
(unique up to an additive constant) solution to (1), (2). Thus, the symmetry
of the boundary value problem implies that f(x,y) is even in y.

Suppose that / is not continuous at O. Then in view of Theorem 1, cases
(I) and (D) cannot hold and aL = —π/2 and α^ = π/2. By Corollary 1,
case (DI) holds when 70 < π/2 and case (ID) holds when 70 > π/2. By
Theorem 2, a — α2 > 70 for 70 < π/2 and a — a2 > π — 70 for 70 >
π/2. These inequalities both imply that α2 ^ π/2 = «/?, which contradicts
Theorem 1. D

The following example shows that the condition for continuity in Corol-
lary 2 is sharp. The construction is similar to that used by Korevaar [17].

Example 2. Let K > 0, λ = 0, and 7 constant, 0 < 7 < α — π/2 (α > π/2).
Consider the symmetric region Ω depicted in Figure 10. We let R be fixed
and we make e sufficiently small so that the solution to (1),(2) must be
discontinuous at O.

Consider the rectangle Ωo (see Figure 10a). Each point in Ωo is in a ball
of radius δ which is contained in Ω. Thus ([2])

/ < A + <* i n Ωo

Consider the region Ω+ bounded by two straight sides and two circles
which is symmetric about the dashed line (see Figure 10b). Each circle
has radius ^,a — cos7 — sin(|π — 2α), and 7 = 2(π — a) + 7. Let g be the
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portion of a torus obtained by rotating one of the circular arcs about the axis
of symmetry by π radians, above the rry-plane (thinking of the a y-plane as
part of JR3) and adjusting the height as follows. Twice the mean curvature
of g has the lower bound: Ng > 7 — #zj. Adjust the height of g so that
maxp = ~(~ — ̂ 37). Then Ng > κg> so that g is a subsolution. Note that
Tg v = cos 7 on the straight side c?+Ω* and Tg v = cos 7 on the other
straight side, while Tf v = — 1 on the two circular sides. It follows from
the Comparison Principle that

(
K \e R-e i n

By making e sufficiently small we can make the lower bound in Ω+ greater
than the upper bound in Ωo, forcing / to be discontinuous at O. Note that
—/ has contact angle 7' = TΓ — 7, so that 3τr/2 — a < 7' < TΓ.

We next consider the situation in which the contact angle has different
limits 7^ along the two sides of the corner.

Corollary 3. Let f be a bounded solution to (1) satisfying (2) on d±CL*\O,
with 7^ = lim5_>0+ 7±(s),0 < 7^ < π. For a < π/2 assume in addition

π - 2a < 7̂ " + % < π + 2α.

Then
Case (I) cannot hold if 2α + 7̂ " — 7J" < π.
Case (D) cannot hold if 2a — 7̂ " + 70" < TΓ.
For a > τr/2, case (ID) cannot hold if 2a + 7^ + 7o~ < 3τr.
For a > π/2, case (DI) cannot hold if 2a — 7^ — 7o~ < TΓ.

The proof follows from Theorem 2 as in Corollaries 1 and 2, so will be
omitted.

By specializing to the case of a convex corner, we obtain a condition for
continuity up to the corner point.

Corollary 4. Let f be a bounded solution to (1) satisfying (2) on
with 7^ = lim^o+ 7±(s), 0 < 7^ < π, a < τr/2,

(14) TΓ - 2α < 7^ + 7^ < π + 2α,

(15) 2α + | 7 o

+ -7o~l<π
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Then f must be continuous at O.

Proof. By Corollary 3 we see that both cases (I) and (D) cannot occur. Hence
/ must be continuous at O. D

It is easy to see that the set of (7^,7^) satisfying conditions (14), (15)
forms a rectangle in the first quadrant of the 7 "̂7o"-plane (see Figure 11). It
is not known whether conditions (14), (15) for continuity are sharp.

As discussed in Section 1, Concus and Finn [3], [11] have encountered
the same rectangle in their investigation of the existence or nonexistence
of a solution in the neighborhood of O in the case that K = 0 and 7 ± are
constants. In addition to the results described in Section 1, they show that
a necessary condition for a solution to have a unit normal that is continuous
up to O is that (7", 7+) belongs to the closed rectangle pictured in Figure 11.

We next present an example where 7 ± are different constants, a — π/2
(dΩ is smooth) and case (D) (or case (I)) holds. This is a modification of
an example of Finn (see Section 4 in [10]).

Example 3. Let 7 ± be two constants 0 < 7" < 7 + < π/2 and n > 0, λ = 0.
Consider the closed off strip region depicted in Figure 12; Γ is the straight
segment not contianing O. Let 7(3) = 7=*= on c^Ω*^ = π/2 on Γ and any
values on the remainder of the boundary so that 7 is a smooth except at O.
(In Finn's example there are two points of discontinuity of 7.) Let Ω* be the
indicated regions, each having two straight sides and two circular sides. The
circular sides make angles 7^ and π/2 with the straight sides as indicated.

As in Example 2, one obtains a bound from below in the region Ω~:

R- e
_ Λ i n

Revolving a circular arc bounding Ω+ about its axis of symmetry by π radi-
ans below the α y-plane and adjusting the height of the resulting torus, one
obtains an analogous upper bound:

1 /cos 7+ 1 \ . +
f Kκ { e + R + e) +

For e sufficiently small, the lower bound exceeds the upper bound, imply-
ing that / is discontinuous at O. By Corollary 3, case (I) cannot hold, so
therefore case (D) must hold. (Of course for —/ case (I) holds.)

Finally, we prove the existence of a bounded capillary surface defined in
a disk, smooth up to the boundary except one point O, for which no radial
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limits exist as O is approached. The construction is a modification of the
"gliding hump" argument used by Lancaster [20].

Theorem 3. Let Ω be the disk of radius 1 centered at (1,0). Then there

exists a solution to Nf = \f in Ω, | / | < 2,/ G C2(Ω) Π C1 (p \ θ ) , 0 =

(0,0) 50 that no radial limits Rf(θ) exist (θ G [-π/2,π/2]).

By an existence theorem of Serrin [26], the Dirichlet problem

(16) Ng = -g in Ω, g = g0 on <9Ω

can be solved for all continuous functions g0, with max|g o | < 2 (since the

curvature of <9Ω is 1). Furthermore if g0 G C1 ) / 3 then g G C2(Ω) Π Cι'β' ( Ω ) .

Before giving the proof of Theorem 3, we need to state a "localization"

lemma.

L e m m a 2. For e > 0,0 < δ < 1,Ω the disk of radius 1 about (1,0) and
Nh = \h in Ω,Λ = h0 on 5Ω, h0 G C1 ) / ?, \ho\ < 2, there exists a g satisfying
(16)^ g0 e_Chβ, with g(O) = 2, \g\ < 2,gQ = /ι0 on 9Ω \ B 5 , and |p - /ι| < e
on Ω$ = Ω \ Bδ)Bδ is the disk of radius δ about O. (The same result holds
with g(O) = -2.)

Proof. For 0 < δ1 < δ let g0 = h0 on <9Ω \ Bδ,,g0(O) = 2,(fo e C1 '^, and
l5oI ^ 2 on δΩ. By the maximum principle, \g\ < 2 on Ω. By known
interior and boundary estimates (these are used, for example, in the proof
of Theorem 4 of [27]) g tends to /ι, pointwise on Ω and uniformly in the C 1

norm on Ω^ as δ1 tends to zero. The conclusion follows. D

Proof of Theorem 3. Using Lemma 2, we construct a sequence {fn} satisfying
Nfn = | / n in Ω, | / n | < 2 in Ω and fn even in y. Each fn is determined by its
boundary values, so these will be chosen to be symmetric with respect to the
x-axis. Let fx = —2 on 9Ω. Then there exists rx G (0,1) with /i(r x,0) < —1.
Let 6χ = - ( 1 + /i(ri,0)). By Lemma 2 there exists f2 with / 2(O) = 2, |/ 2 | <
2, and |/ 2 — / i | < ex in ΩΓ l. This implies that /2(ri,0) < — 1 and hence, by
continuity, there exists and r 2 so that 0 < r 2 < r i , r 2 < | and / 2 (r 2 ,0) > 1.
Define fn and rn inductively: set en = minx^^n | / n ( ^ , 0 ) — (—1)*!, pick
/n+i, r n + i so that 0 < r n + i < min{rn, ^ - } and | / n + i - fn\ < en on ΩΓn,
where / n + i (O) = 2 ( - l ) n + 1 and / n + 1 agrees with fn on 9Ω \ Brn. It follows
that /n(rife, 0) > 1 if Λ; is even and fn(rk, 0) < —1 if A; is odd, for 1 < k < n. In
view of the interior and boundary extimates invoked in the proof of Lemma
2, a subsequence of {/n} converges to a solution / satisfying Nf = \f in

Ω, I/I < 2,/ G C2(Ω) D C1 (Ω \ θ) , the convergence being uniform in the



188 K.E. LANCASTER AND D. SIEGEL

C1 norm on each Ω rn. Since we take each fn to be even in y, then / is
even in y. Prom previous inequalities, we have /(τ*n,0) > 1 if n is even and
/(r*n>0) < —1 if n is odd, for all n. Therefore, Rf(0) = limr_>0+/(^>0) does
not exist. Now, if any other radial limit Rf(θ0) did exist (θ0 φ 0), then
by symmetry so would Rf{—Θo) and Rf{—Θo) = Rf{θ0). Considering the
region Ω' = {x G Ω : |0| < |#o|}? / has continuous boundary values on
5Ω'. If θ0 — ±π/2, then Ω' = Ω, and / must by continuous on Ω, giving
a contraditcion; If |0O| < π/2 then portions of cylinders can be used as
upper and lower barriers to establish the continuity of / on Ω , again giving
a contradicton. D

5. Extensions.

We now make a few remarks about extensions of our results. Theorems 1 and
2 apply to variational solutions which are continuous up to smooth portions
of the boundary since the Comparison Principle holds for weak solutions
(Theorem 7.7 in [8]).

If we change the equation to Nf = 2iϊ(x, /) then Theorems 1 and 2 are
again true provided either H is strictly increasing in / or if H depends only
on /, is analytic, strictly decreasing, and unbounded from one side. An
example of the latter is H = e~Λ These conditions on / come into play only
in ruling out "cusp" solutions (see Step 3 in the proof of Theorem 1). It is
not known if these "cusp" solutions can be ruled out more generally.
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Figure 2a. Figure 2b.

Figure 3.
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Figure 4a. Figure 4b.

Figure 5.

Figure 6.
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Figure 7.

Figure 8.

Figure 9.
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Figure 10a. Figure 10b.

Figure 11.

Figure 12.
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