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SOLVABILITY OF DIRICHLET PROBLEMS FOR
SEMILINEAR ELLIPTIC EQUATIONS ON CERTAIN

DOMAINS

ZHIREN JIN

We demonstrate a method to solve Dirichlet problems for
semilinear elliptic equations on certain domains by a combi-
nation of change of variables, variational method and super-
sub- solutions method. We show that Dirichlet problems for
a semilinear elliptic equation have a least one solution as long
as a relationship between the growth rate of the nonlinear
term and the size of the domain is satisfied. The result can
be applied to semilinear elliptic equations with super-critical
growth.

1. Introduction and Results.

Let Ω be a bounded domain in i?n, n > 2. We consider the Dirichlet problem
for a semilinear elliptic equation

= f(x,u) in Ω;

\u = 0 on dΩ,

where Δ is the standard Laplace operator, f(x^u) is a local Holder contin-
uous function denned on Ω x R.

Throughout the paper, we assume that:

(f) There are positive constants M l 9 M2, q > 1, such that

|/(z,*)| <Mλ+ M2\t\q for all x e Ω, t e R.

The main result of paper is

Theorem 1. There is a constant c(n,q) depending only on n and q, such
that if we assume

(i) (t);

(2) |Ω| <c(n,q
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then (DQ) has at least one solution.

When q < ^ | , a result similar to Theorem 1 was shown in [3]. The
method used in [3] is the variational method. When q > ^ | , a direct
variational approach does not work. We shall use a combination of changes
of variables, super- sub- solutions method and variational method to show
the result.

As in [3], since the result requires the volume of the domain Ω to be dom-
inated by something related to the nonlinear term, we need to distinguish
the result from the triviality of using an implicit function theorem to get a
similar result. Here are a few points. First of all, an implicit function theo-
rem tells us that (Do) has at least one solution when the size of the domain
Ω is small, but usually one will not be able to get an explicit upper bound
for the size of the domain as we do here. Secondly, in the case that M2 is
small relative to Mu the bound in Theorem 1 is not necessarily small at all.
Lastly, the bound obtained in the result is invariant under the scaling of the
domain (as explained in [3]).

When /(#,0) = 0 on Ω, (Do) has a trivial solution u — 0. And (1) and
(2) in Theorem 1 are not enough to assure the existence of a nontrivial
solution as indicated by the well known Pohozaev identity [5] for the case
that f(x,t) = Itl9"1*, q > ^ f and Ω is any ball (see [6] also). To get a
non-trivial solution, additional conditions are needed. Let Xx be the first
eigenvalue of — Δ on Ω with Dirichlet boundary conditions. Then we have

Theorem 2. There is a constant c(n,q) depending only on n and q, such
that if

(1) (t);

(2) \n\<c(n,q

(3) lin^ >0+ ^j^- > Xι uniformly for x G Ω,
then (Do) has a positive solution.

Remark. Any function f(x,t) will satisfy (3) in Theorem 2 if near t = 0,
t > 0, f(x,t) behaves like ctβ for some c > 0 and β < 1. Indeed, (3) assures
that (Do) has a family of very small positive subsolutions. And (3) can be
replaced by any other conditions which assure the existence of small positive
subsolutions for (Do).

The ideas of the proofs: since there is no restriction on g, one can not
use the variational method directly to solve (Do). What we shall do is
to combine a change of variable and the variational method to construct
a pair of super- sub- solutions. For the purpose of illustration, we give a
rough sketch of the proof of Theorem 1 here. Let /+(x,t) = max{/(x,t),0},
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f~(x, t) = min{/(rr, £), 0}. We look at a pair of quasilinear elliptic equations
(α is a constant to be chosen).

(1)

and

(2)

=f+{x,u1) + -—-IVuJ2 in Ω;

> 0 in Ω;

= 0 on 5Ω

-Au2 = f (x,u2)-\ |Vu2|
2 in Ω;

u2

u2 < 0 in Ω;
u2 = 0 on dίl.

If we can solve (1) and (2) for uλ and u2, then u2 < t*i, and we have a
pair of super- sub- solutions. Thus (Z)o) has a solution (for example, see
Theorem 6.5 in [4]).

Usually it is not a good idea to solve a semilinear equation by looking at a
quasilinear one. But here a change of variable will change the whole picture.
For example if q > s±|, a > (g~1)

4

(n~2), let υ = ~ K | α in (1), then υ satisfies

' - A v = /+ (x, (a\υ\)« J (α|v|) i f L^ l i in Ω;

> 0 in Ω;

[v = 0 on <9Ω.

Thus the change of variable has transformed the quasilinear equation into
semilinear one with sub- critical growth! Now we can use the variational
method and the method used in [3] to get a super- solution uλ. A sub-
solution u2 can be obtained similarly.

Acknowlegment: The author would like to thank the referee for valuable
suggestions.

2. Proofs.

2.1. Proof of Theorem 1. We may assume that f(x,0) is not identically
zero, otherwise u = 0 is a trivial solution.

Step 1: Existence of a super- solution u\.

We may assume /+(#i,0) > 0 for some xλ € Ω, otherwise uλ = 0 is a
super- solution.
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Let a >
later. Consider

(3)

. The exact value of a will be determined

> 0

= 0

Change variable υ = ^ | ^ i | α , then v satisfies

(4)

in Ω;

in Ω;

on 3Ω.

in Ω;

in Ω;

on <9Ω.

It is clear that every solution of (4) corresponds to a solution of (3).

Set fi(x,v) = / + (x, (a\v\)°) \av\iΞLz11. Then fi(x,v) > 0 for all v and is

Holder continuous about v. (f) implies that for all *υ

(5) 0

Here we observe that

critical growth if a >

< a±| if α > . Thus /i(a:,t;) has sub-

Consider the functional

V υ | 2 ώ - / F1(x9v)dxi v G
JΩ

where Fx (x, v) = /o

v /i (#, θ)dθ.
We shall show that Ja(v) has a nontrivial critical point for suitable choice

of a (and under the assumption of Theorem 1). Then the regularity theory
(see [1] ) and the maximum principle imply that the non-trivial critical point
is a positive solution to (4).

For any v 6 i?o(^)> from (5) we have

JΩ

Then

q + 2a —

>\ [ \Vv\2 dx -
2 JQ

— a 2a-I
M

Mx ί \v\

ί \°r
JΩ
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Let qu q2 be defined by ~ = | + ~ ί | ^ and ~ = | — ̂ ~ ^ ^ ~ ^ Using
Holder inequality and Sobolev embedding inequality (see [8])

a \v\^dx] "^ < S(n) ( ί \Vv\2dx] 2 v e E '
Ω / \J Ω /

we have

> I
2a —

(ί

Denote (fQ \Vυ\2dx) = p, we get

1 2 - ^
^ -1 2 a a

5(n)
9 + 2α - 1

V2 9 + 2 α - l w ' ' /

Let p be defined by

(6) p = I Of α Sl(n) a |0|q2 J Af2

Then

Thus if

we shall have Ja(v) > 0 on (jQ \Vu\2dxJ = p with p determined by (6).

(7) is equivalent to
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Combining this with (6) and definitions of qu q2, we have

for some constant c(n, q, a) depending only on n, q and α. And c(n, g, a) is
continuous for a > 1. Now we choose a = \^~1)\n~2) + i? denote Ja(y) by
J(v). Then there is a constant c(n,q) depending only on ρ, n, such that if

we have

(9)

(8)

On the other hand, since /+(^i,0) > 0 and α > 0, we see that fι(xι,v) «
cv1'* for v > 0 small. Hence we can choose Vι £ HQ(Ω) such that Ĥ H < \p
and

(10)

Now a standard argument in critical point theory (see [2] or [6]) implies that
J(v) has at least one nontrivial critical point v2 (such that J(v2) < 0).

Step 2: Existence of a sub- solution u2.

This part is almost identical to Step 1. We just sketch here.
We may assume f~{x2i 0) < 0 for some x2 G Ω, otherwise u2 = 0 is a sub-

solution.

Let a > max I (g~1Hn~2) ? l i. The exact value of α will be determined

later. Consider

Change variable v = ^\u2\
a ιu2 in (11), then i> satisfies

It is clear that every solution of (12) corresponds to a solution of (11).
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Let f2(x,υ) = / + (a?,-(α|t;|)±) (a\v\)^. Then f2(x,v) < 0 for all υ

and is Holder continuous about v. (f) implies that for all υ

(13) 0 > f2(x,v) > — Mλa « 1^1^—M 2 α « |v| * «~ .

Once again we notice that * ± ^ < s ± | w hen α > <g"1)<n~2). Thus f2(x,v)

has sub- critical growth in v if a > (g^X*-2),

Consider the functional

'«(«) = J / \Vv\2dx - ( F2{x,v)dx, v G ^ ( Ω ) ,
-ώ 7 Ω JΩ

where F2{x,v) = f£ f2(x^s)ds.
We shall show that Ia(υ) has a nontrivial critical point for suitable value

a (and under the assumptions of Theorem 1). Then the maximum principle
implies that the non-trivial point is a negative solution of (12).

For v G #o(Ω)> b y (13)> w e h a v e

F2(x,υ)dx < - M j \v\'£^dx H - α 1 ^ M2 M*^ dx.
Jςi 2a — 1 Jn q + 2a — 1 JQ

Thus

Ia(v) >\f \Vvfdx - ^τMx ί \vf^ dx
2 JQ la — 1 JQ

1 g + 2 α - l fixq+2α-l
- — — - α - M2 / t; - dx.

q + 2a—l JQ

As we did in Step 1, we choose a = ^-1Kn~2) + i. Then there is a constant

c(n, q) depending only on g, n, such that if |Ω| < c(n, q) [M2Ml~ιλ 2q, (here

/α(υ) is denoted by /(υ)),

/(v) > 0 for all v G ̂ ( Ω ) with ||t;|| = p given in (6).

Since f~(x2,0) < 0 and α > 0, we see that f2(x2,v) « c|υ|~it; for υ < 0
small. Hence we can choose v3 G i?o(Ω) such that 11-ι̂311 < \p and

I(v3) < 0.

Thus I(v) has at least one nontrivial critical point v4.

Step 3: Existence of at least one solution.

Since u2 < uλ is a pair of super- sub- solutions to (Do), (DQ) has a solution

by Theorem 6.5 in [4]. D
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Remark 1. Prom the proof we see that the choice of a is not unique.
The choice of a will certainly have impact on the magnitude of the constant
c(n, q) in (9). Naturally one interesting question is for which value of a is the
constant c(n,q,a) in (8) maximized. It is easy to check that the constant
c(n, g, α) defined in (8) will tend to zero as a —> oo, so one might think that
c(n, ςr, a) attains the maximum value when a is small. The smallest value
that a can take is max { ^" 1 )] n " 2 ), l | if q φ s±| . And if q = 2±|, then a can
take any value arbitrary close to 1 (but greater than 1). It is not difficult to
see that in any case the constant c(n, q) in Theorem 1 can be obtained by
choosing a = max j (q-i)(w-2) ̂  Λ j n c ^ ^ α^

The proof of Theorem 1 can be modified to obtain a more general version.
Let F(x,t) = JtJ(x,s)ds, Ωx = {x\F(x,t) Φ 0 for some t > 0}, Ω2 =
{x\F(x,t) φ 0 for some t < 0}, We now impose the growth conditions on
/(x,t) and F(x,t).

(F+) There are positive constants M1? M2, q\ > 1, such that

(14) limsup I / ( M ) I < +oo,
t—y+oo t q i

and

(15) \F(x,t)\ < Mi|t| +M2\t\qi+ι for all x e Ω, * > 0.

(F_) There are positive constants mi, m2, q2 > 1, such that

(16) limsup i ί M i < +oo,
ί—>--oo | t | y 2

and

(17) \F(x,t)\ < mi|t | + m 2 | t | 9 2 + 1 for all x G Ω, t < 0.

Then we have

Theorem 1* There are constants Cι(n,qι), c2(n,q2) depending only on
Qi, Q2 and n> such that if we assume

(1) (F+) and |Ωχ| < c1(n,q1) (M2MΓι)~^

(2) (F_) and |Ω2| < c2{n,q2)(m2mf " 1 ) " ^ ;

ίΛen (£)0) Λαs α solution.

Proof. The proof here is more or less the same as that for Theorem 1. We
only indicate the necessary changes here.
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Once again, we may assume that u = 0 is not a solution, otherwise there
is nothing to prove.

Let φ(t) be a smooth function defined by φ(t) = 0 if t < 1, φ(t) = 1 if t > 2,
and 0 < φ(t) < 1 on 1 < t < 2. For any small positive constant 0 < δ < 1,
s e t / 3 ( z , t ) = f+(x,t) + φ(±)f-{x,t) Ίft> 0 and f3(x,t) = /+(rr,O) if t < 0;

ΛOM) = / " ( M ) + 0 ( - ? ) / + ( M ) if ί < 0 and /4(a,t) = / " ( M ) if ί > 0.
Then / 3 ( M ) = f(x,t) iΐt>2δ and /4(x,*) = f(x,t) if t < -2ί. Consider

(18) > 0

= 0

| in Ω;

in Ω;

on <9Ω,

and

(19) u2 < 0

wi = 0

in Ω;

in Ω;

on 9Ω.

It is clear that any solution of (18) is a super- solution of (Do) and any
solution of (19) is a sub- solution of (A)) Since u2 < Uι for any solutions
u2 and Uι of (19) and (18) respectively, we only have to show that (18) and
(19) have solutions.

Here we shall sketch the proof that (18) has a solution (under the assump-
tion that /+(a;,0) is not identically zero, otherwise 0 is a super- solution).
(The proof that (19) has a solution is similar.)

Change variable υ = ^ |^ i | α in (18), then υ satisfies

(20)

f-Av = f3(x,(a\v\)i)(a\v\Y

\υ>0

in Ω;

in Ω;

on 3Ω.

Consider the functional

Jα ί(ti) = - / \Vv\2dx— / F3(x,υ)dx, υ G E
2 JQ JQ

where F3(x,v) = /o

υ/3 (a;, (α|s |) i) ( c φ D ^ ^ d s .

Since f3(x,υ) > 0 when v < ~ , the maximum principle concludes that
any non-trivial critical point of Jaj(v) is a positive solution to (20).
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Now let us show that Ja,δ{v) has a non-trivial critical point for some small

ίandα = maxj^'f"2', l} .

For υ > 0,

/s(a?,(α|«|)±)(α|«|) « da

φ (^ψ^-) Γ (*, (a|*|)i) } (a|S|)^ώ

= F (x, (av)« J

- 2(a -l)[aV F{x, z)z2a~3 dz + c(/, n, 9 i )5 a

V o

< F (x, (aυ)°) (av) °~

2(α - 1) / \F(x, z)\z2a~3 dz + c(/, n, qx)δa

J o

( )i
2(α -1) [aV {Mλz + M 2 z 9 l + 1 )^ 2 α - 3 d5 + c(/, n, ςfjί0

^ o

Now as we did in the proof of Theorem 1, it follows that there are constants
c(n?9i) a n d Pi depending only on n, ςfi, such that

if \n1\<c(n,q1)(M2MΓiY^,

J(v) >-c(/,n,ςri)5β for all υ G fl^(Ω) with ||v|| = px.

On the other hand, /+(x1,0) 7̂  0 for some i [ G fi implies that we can
choose a υ5 independent of δ, such that ||«5|| < |p i and J(υ5) < 0. Now if
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we choose a ί > 0 such t h a t

-c(f,n,qi)δa> J(υ5),

we see that J(v) has a nontrivial critical point v6 such that \\v6\\ < pλ and
J{v6) < J(v$) < 0. Thus there is a solution to (18).

The rest of the proof is clear. D

Remark 2. Since conditions (F+) and (F_) are imposed on F(x,t), the
behavior of f(x >t) can be quite different. Furthermore the qx in (14) and
(15) and the q2 in (16) and (17)) can be two different numbers. That is,
f(x,t) and F(x,t) can have different growth rates. If this is the case, the
constant c(n,qι) will be changed accordingly. Finally if qx < s±| 9 w e can
take a = 1 in the proof and replace F(x,t) by F+(x,t) = max{F(z,£),0} in
(14). Thus we have recovered the main result in [3].

When /(#,0) = 0, (Z?o) has a trivial solution u — 0. Then the main
interest in this case is in non-trivial solutions. On the other hand, the
conditions in Theorem 1 are not enough to assure a nontrivial solution.
Indeed, if f{x,t) — \t\q~xt with q > ^ § , the well known Pohozaev identity
[5] concludes that (Do) does not have any non-trivial solutions for any ball
Ω. To get a nontrivial solution for (Do), we use an additional condition 3) in
Theorem 2. Basically 3) in Theorem 2 assures that {Do) has a very small
positive sub- solution.

2.2. Proof of Theorem 2. Since lim i_>0+
j i i7^ > λi, there is a d > 0, such

that f{x,t) > λit for 0 < t < d. Then for any 0 < δ < d, u2 — δφ{x) is a
sub- solution for (Do)? where ψ{x) is the positive first eigenfunction of —Δ
on Ω with Dirichlet boundary conditions and uidix^xeQyφ(x) = 1.

Now define

^ [X't} ~ \f(x,t) if t>0.

Then /*(#,£) satisfies (f) with the same constants Mλ and M2 as used by
f(x,t).

Consider

ί ^ in Ω;
on <9Ω.

As we did in the Step 1 of the proof of Theorem 1, (P*) has a positive
solution v > 0 (under the assumptions (1) and (2) of Theorem 2, and we
shall use limί_κ)+^f2^ > λi to find Vι satisfying (10)). In particular v is a
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super- solution for (Do). Since f(x,t) > 0 for t > 0 small, an application
of maximum principle implies that v(x) > διψ{x) on Ω for some positive
constant δ\.

Now fix a 0 < δ < ίx, then u2 = δφ(x) < v, and u2, v is a pair of super-
sub- solutions. Therefore (Do) has a positive solution. D

Remark 3. If /(#, ί) is C1 near t = 0 in Theorem 2, we see that (Do) has
two solutions Uι > 0 and τ/2 < 0.

Remark 4. It is straightforward to modify the method used here to obtain
similar results for Dirichlet problems for a second order elliptic equations in
divergent form

u = 0 on c?Ω,

but now the constant c(n, q) will depends on the dimension n, growth expo-
nent q and the smallest eigenvalue of the positive matrix (a,ij(x)) on Ω.
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