Notes to the Feit-Thompson conjecture. II

By Kaoru Motose

Emeritus Professor, Hirosaki University^{†)}

(Communicated by Shigefumi MORI, M.J.A., Sept. 13, 2010)

Abstract: Feit and Thompson conjectured for distinct primes p < q that $(q^p - 1)/(q - 1)$ never divides $(p^q - 1)/(p - 1)$. This paper is a record on partial solutions to this conjecture for small primes 3 and 5.

Key words: Odd order theorem; power residue symbol; Eisenstein reciprocity.

We set for primes p < q,

$$F = \frac{q^p - 1}{q - 1}$$
 and $T = \frac{p^q - 1}{p - 1}$.

Feit and Thompson [2] conjectured that F never divides T. If it would be proved, their odd order theorem [3] would be greatly simplified (see [1,4]). In this paper, partial solutions to this conjecture are given for p=3 and p=5 (see also [6,7]).

Throughout this paper, we set $\zeta = e^{\frac{2\pi i}{p}}$ and $\lambda = 1 - \zeta$. In case $q \equiv 1 \mod p$, $F \equiv 0$ and $T \equiv 1 \mod p$ and so F never divides T. Thus we assume $q \not\equiv 1 \mod p$ in this paper. Hence p > 2 and there exists a positive integer c with $c(q-1) \equiv 1 \mod p$.

We set $\eta = \zeta^c(\zeta - q)$ and let D_p be the ring of algebraic integers in $\mathbf{Q}(\zeta)$. Then η is primary (see [5, p.206]) by the next Lemma (1) and F is the norm $N(\eta)$ of η in D_p .

Let
$$\chi_A = \left(\frac{1}{A}\right)_p$$
 be the *p*th power residue symbol

where A is an ideal of D_p with $A \not\ni p$ (see [5, p.205]). We write simply χ_{α} in case $A = \alpha D_p$ for $\alpha \in D_p$.

The next Lemma (2) holds for odd mth power residue symbols and (3) holds for an arbitrary m.

Lemma. We have the next assertions.

- (1) $\eta \equiv 1 q \mod \lambda^2$, namely, η is primary.
- (2) $\chi_n(-1) = 1$ and if a, b are real, then $\chi_a(b) = 1$.

(3)
$$\chi_A(\zeta) = \zeta^{\frac{N(A)-1}{p}}$$
. In particular, $\chi_{\eta}(\zeta) = \zeta^{\frac{F-1}{p}}$.

Proof. (1) Since $p = \lambda^{p-1}u$ for some $u \in D_p$ and so $c(q-1) \equiv 1 \mod \lambda^2$,

$$\begin{split} \eta &= (1 - \lambda)^c (1 - \lambda - q) \\ &\equiv (1 - c\lambda)(1 - q - \lambda) \\ &\equiv 1 - q + \lambda(c(q - 1) - 1) \equiv 1 - q \mod \lambda^2. \end{split}$$

(2) We have $\chi_{\eta}(-1) = \chi_{\eta}(-1)^p = 1$ for an odd p. Since $\zeta \to \bar{\zeta}$ is the automorphism of $\mathbf{Q}(\zeta)$, where $\bar{\zeta}$ is the complex conjugate of ζ , it follows from [5, p.206, Proposition 14.2.4] that

$$\overline{\chi_a(b)} = \chi_{\bar{a}}(\bar{b}) = \chi_a(b)$$

and so $\chi_a(b)$ is real. Our assertion follows since p is odd and $\chi_a(b)$ is a pth root of 1.

(3) If $a \equiv 1$ and $b \equiv 1 \mod p$, then it follows from $(a-1)(b-1) \equiv 0 \mod p^2$ that

$$\frac{ab-1}{p} \equiv \frac{a-1}{p} + \frac{b-1}{p} \mod p.$$

Thus if $\chi_B(\zeta) = \zeta^{\frac{N(B)-1}{p}}$ and $\chi_C(\zeta) = \zeta^{\frac{N(C)-1}{p}}$, then $\zeta^{\frac{N(BC)-1}{p}} = \chi_{BC}(\zeta)$ by N(BC) = N(B)N(C). In case A is prime, (3) is clear by $A \not\ni p$ and in general case, it follows from the above.

The next is a key in this paper. However I can not compute $\chi_{\eta}(u)$ for p > 5.

Proposition. Assume F divides T. Then we obtain the following assertions.

- (1) $\chi_{\eta}(p) = 1$.
- (2) $\chi_{\eta}(u) = \chi_{\eta}(\zeta 1)$ for a unit $u = \prod_{t=2}^{p-1} \frac{\zeta^t 1}{\zeta 1}$.
- (3) $\chi_{\eta}(\zeta + \epsilon)^{2(q-1)} = \chi_{m}(\zeta)^{q+1}$ where $\epsilon = \pm 1$ and $q + \epsilon = p^{\ell}m$ with $p \nmid m$. In particular, $\chi_{\eta}(\zeta + \epsilon) = 1$ if p divides q + 1.

Proof. (1) In virtue of $F \mid T$, we can see $\chi_{\eta}(p) = 1$ from (q, p) = 1 and the equation

$$\chi_{\eta}(p)^q = \chi_{\eta}(p^q) = \chi_{\eta}(1) = 1.$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 11A07, 20D05

(2) It follows from $p = (\zeta - 1)^{p-1}u$ and the next equation by (1) that

$$1 = \chi_{\eta}(p) = \chi_{\eta}((\zeta - 1)^{p-1}u) = \chi_{\eta}(\zeta - 1)^{-1}\chi_{\eta}(u).$$

(3) Since each pair of η , m and p is relatively prime and η is primary, using (1) and the Eisenstein reciprocity law (see [5, p.207, Theorem 1]), we have

$$\chi_{\eta}(\zeta + \epsilon) = \chi_{\eta}(q + \epsilon) = \chi_{\eta}(p)^{\ell} \chi_{\eta}(m) = \chi_{m}(\eta)$$
$$= \chi_{m}(\zeta^{c}) \chi_{m}(\zeta + \epsilon).$$

We have our result by 2(q-1)th power of two sides in this equation. In fact, we obtain from Lemma (2)

$$\chi_{\eta}(\zeta + \epsilon)^{2(q-1)} = \chi_{m}(\zeta^{c(q-1)})^{2} \chi_{m}(\zeta^{2} + 2\epsilon \zeta + 1)^{q-1}$$
$$= \chi_{m}(\zeta)^{q+1} \chi_{m}(\zeta + \bar{\zeta} + 2\epsilon)^{q-1}$$
$$= \chi_{m}(\zeta)^{q+1}$$

because $c(q-1) \equiv 1 \mod p$ and $\zeta + \bar{\zeta} + 2\epsilon$ is real.

Corollary. F never divides T in either case of the following

- (a) p = 3 and $q \not\equiv -1 \mod 9$
- (b) $p = 5 \text{ and } q = 5\ell 1 \text{ with } 5 \nmid \ell$.

Proof. We use notations in Proposition and we assume F divides T. Then $q \not\equiv 1 \mod p$ as in the first notice. Thus we have $q \equiv -1 \mod p$ in any case (a) or (b). Thus we have $1 = \chi_{\eta}(\zeta + \epsilon) = \chi_{\eta}(u)$ from Proposition (3) and (2).

(a) We have $\chi_{\eta}(\zeta) = 1$ from the next equation by Lemma (2).

$$1 = \chi_{\eta}(\zeta + 1) = \chi_{\eta}(-\zeta^{2}) = \chi_{\eta}(-1)\chi_{\eta}(\zeta)^{2} = \chi_{\eta}(\zeta)^{2}.$$

The equation $q \equiv -1 \mod 9$ follows from

$$1 = \chi_{\eta}(\zeta) = \zeta^{\frac{F-1}{3}} = \zeta^{q\frac{q+1}{3}}$$
 by Lemma (3).

(b) Noting $1 = \chi_{\eta}(u) = \chi_{\eta}(\zeta + 1)$ and $u = \zeta^{2}(\zeta + 1)^{2}$, we have

$$1 = \chi_n(u) = \chi_n(\zeta)^2 \chi_n(\zeta + 1)^2 = \chi_n(\zeta)^2.$$

Hence, by Lemma (3),

$$1 = \chi_{\eta}(\zeta) = \zeta^{\frac{F-1}{5}} = \zeta^{q(q^2+1)\frac{q+1}{5}}.$$

Thus $q \equiv -1 \mod 25$.

References

- [1] T. M. Apostol, The resultant of the cyclotomic polynomials $F_m(ax)$ and $F_n(bx)$, Math. Comp. **29** (1975), 1–6.
- [2] W. Feit and J. G. Thompson, A solvability criterion for finite groups and some consequences, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 968–970.
- [3] W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775– 1029.
- [4] R. K. Guy, Unsolved problems in number theory, Third edition, Springer, New York, 2004.
- [5] K. Ireland and M. Rosen, A classical introduction to modern number theory, Second edition, Springer, New York, 1990.
- [6] K. Motose, Notes to the Feit-Thompson conjecture, Proc. Japan Acad. Ser. A Math. Sci. 85 (2009), no. 2, 16–17.
- [7] N. M. Stephens, On the Feit-Thompson conjecture, Math. Comp. 25 (1971), 625.