No. 8]

Proc. Japan Acad., 86, Ser. A (2010) 131

Notes to the Feit-Thompson conjecture. 11
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Abstract:
never divides (p? —1)/(p —
small primes 3 and 5.
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We set for primes p < ¢,

P _1 a_1
:q andT:p .
qg—1 p—1

Feit and Thompson [2] conjectured that F
never divides T. If it would be proved, their odd
order theorem [3] would be greatly simplified (see
[1,4]). In this paper, partial solutions to this
conjecture are given for p =3 and p =5 (see also
6.7)). N

Throughout this paper, we set ( =er and
A=1—-( In case ¢g=1mod p, F=0 and T =
1 mod p and so F' never divides T'. Thus we assume
q# 1 mod p in this paper. Hence p > 2 and there
exists a positive integer ¢ with ¢(¢ — 1) =1 mod p.

We set n=(°({ — ¢) and let D, be the ring of
algebraic integers in Q(¢). Then 7 is primary (see
[5,p.206]) by the next Lemma (1) and F is the norm
N(n) of nin D,,.

A

where A is an ideal of D, with A # p (see [5,p.205]).
We write simply x. in case A = aD, for a € D,.

Let x4 = <—> be the pth power residue symbol
p

The next Lemma (2) holds for odd mth power
residue symbols and (3) holds for an arbitrary m.
Lemma. We have the next assertions.
(1) n=1—q mod 2, namely, n is primary.
(2) xp(-1)=1 and if a,b are real, then x,(b) = 1.

\(A) Pl
(3) xa(Q) = . In particular, x,({) =( 7 .
Proof. (1 ) Since p = W~ !y for some u € D,, and
soc(g—1) =1 mod N\
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Feit and Thompson conjectured for distinct primes p < ¢ that (¢? —1)/(q¢ — 1)
1). This paper is a record on partial solutions to this conjecture for

Odd order theorem; power residue symbol; Eisenstein reciprocity.

n=01-A)(1-A-q)
=1-cN1=-qg-X
=1-qg+XMclg—1)—1)=1—¢ mod X2
(2) We have x,(—1) = x,(—1)" =1 for an odd
p. Since ¢ — ( is the automorphism of Q(¢), where ¢

is the complex conjugate of (, it follows from
[5, p.206, Proposition 14.2.4] that

Xa—(b) = Xﬁ(g) - Xa(b)

and so x,(b) is real. Our assertion follows since p is
odd and x,(b) is a pth root of 1.
(3) If a=1 and b=1 mod p, then it follows
from (a —1)(b—1) =0 mod p? that
ab—1 b -1
p p

N(B)-1 N(C)-1
Thus if xp({)=¢ 7 and xc(¢) = CCT
I = xue(€) by N(BC) = N(B)N(C). Tn case

A is prime, (3) is clear by A Z p and in general case,

a—l

mod p.

, then

it follows from the above. O
The next is a key in this paper. However I can
not compute x,(u) for p > 5.
Proposition. Assume F divides T. Then we
obtain the following assertions.

(1) xy(p) = 1.
(2) xp(u) = xy(C—1) for a unit u = H

(3) xy(¢+ ™Y = X (O™
where € = £1 and q+ ¢ = p'm with p { m.

(t

-1

In particular, x,(( +¢€) =1 if p divides ¢+ 1.
Proof. (1) In virtue of F|T, we can see
Xy(p) =1 from (¢,p) = 1 and the equation

Xn(0)" = Xy (p?) = xy(1) = 1.
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(2) It follows from p = (¢ — 1) ' and the next
equation by (1) that

1= Xn(p) = Xn((( - 1)p_lu> = XU(C - 1)_1Xn(u)-

(3) Since each pair of 7, m and p is relatively
prime and 7 is primary, using (1) and the Eisenstein
reciprocity law (see [5, p.207, Theorem 1]), we have

XS+ €) = xaa + &) = Xy (0) X () = Xin()
= Xm (¢)xm(C + €).
We have our result by 2(¢— 1)th power of two

sides in this equation. In fact, we obtain from
Lemma (2)

XH(C + 6)2((171) = X7r1,(<0(q71))2x7n(c2 +2eC + 1){171
= Xm(C)QJrle(C + 5—’_ 26)1171
= Xm(C){H—l

because ¢(q — 1) =1 mod p and ¢ + ¢ + 2¢ is real.
O

Corollary. F never divides T in either case

of the following
(a) p=3andq# —1 mod 9
(b) p=5and gq=50—1 with 51 L.

Proof. We use notations in Proposition and we
assume F' divides T. Then ¢ # 1 mod p as in the
first notice. Thus we have ¢ = —1 mod p in any
case (a) or (b). Thus we have 1 = x,(¢ 4+ €) = x;(u)
from Proposition (3) and (2).

(a) We have x,(¢) =1 from the next equation by
Lemma (2).

[Vol. 86(A),

1= X’U(C + 1) = X'rl(_CZ) = XT/(_l)Xn(C)Q = XT1(<)2-
The equation ¢ = —1 mod 9 follows from
1=x,(¢) = (7 = ¢ by Lemma (3).
(b) Noting 1 = x,,(u) = x,(¢+ 1) and u = *(¢ + 1),

we have

1= Xn(u) = XU(C)ZXW(C + 1)2 = Xn(C)Q'

Hence, by Lemma (3),

1= XU(C) = C% — Cq(q2+1)%‘

Thus ¢ = —1 mod 25. U
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