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Abstract:

In a recent paper in this Proceedings, H. Okamoto presented a parameterized

family of continuous functions which contains Bourbaki’s and Perkins’s nowhere differentiable
functions as well as the Cantor-Lebesgue singular function. He showed that the function changes
it’s differentiability from ‘differentiable almost everywhere’ to ‘non-differentiable almost every-
where’ at a certain parameter value. However, differentiability of the function at the critical
parameter value remained unknown. For this problem, we prove that the function is non-
differentiable almost everywhere at the critical case.
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1. Introduction. We consider a parameter-
ized family of continuous functions which were pre-
sented by H. Okamoto [3, 4]. This function can be
regarded as a generalization of Bourbaki’s [1] and
Perkins’s [5] nowhere differentiable functions as well
as of the Cantor-Lebesgue singular function.

Okamoto’s function is constructed as the limit
of a sequence {f,} ~, of piecewise linear and contin-
uous functions. For a fixed parameter a € (0, 1), each
function in the sequence is defined as follows:
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Continuous non-differentiable function; the law of the iterated logarithm.

(iv) fut1(z) is linear in each subinterval
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Figure 1 shows the operation from f, to f,.1. Oka-
moto’s function Fy(x) is then defined as

Fo(z) = lim f, ().

He noticed that F,(z) is continuous on [0, 1] and co-
incides with some known functions when a takes par-
ticular values. For example, the cases a = 5/6 and
a =2/3 correspond to nowhere-differentiable func-
tions defined by Perkins [5] and Bourbaki [1] respec-
tively. Also, if a =1/2, F, is the Cantor-Lebesgue
singular function which is non-decreasing and has
zero derivative almost everywhere (Fig. 2).
2. Differentiability of F,. In the paper [3],
H. Okamoto proved that F,(z) has the following fea-
tures:
(i) If a < ag, then Fy(x) is differentiable almost
everywhere.
(i) If ap < a < 2/3, then F,(z) is non-differentiable
almost everywhere.
(iii) If 2/3 <a <1, then F,(z) is nowhere differen-
tiable.
Here, the constant ag(=
root of

0.5592 - - -) is the unique real

54a® — 27a% = 1.
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Fig. 1. The operation from f, to f,+1. Before the operation (top)
and after the operation (bottom). This operation is performed in
each subinterval [k/3", (k+1)/3"].

As for the case a = ag, it remained open whether
F,(x) is differentiable almost everywhere or non-
differentiable almost everywhere. In this case, we
proved that Fy(x) is non-differentiable almost every-
where.

3. Main result.
cle is the following

Theorem 1. If a= ay, then F,(z) is non-
differentiable almost everywhere in [0,1).

In order to prove this theorem, we need some
definitions and a preliminary lemma concerning with
the law of the iterated logarithm [2].

Definitions. Let

= 6 (2)
=3 ),

denote the ternary expansion of z € [0,1). If z is a
rational number of the form k/3", we use the ternary
expansion ending in all 0’s (instead of the one ending
in all 2’s). We also use the following notations:

1, (k=0 or k=2),
C(k):{—z Ek:l), :

The main result of this arti-
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Fig. 2. The graph of Perkins’s function (top), Bourbaki’s function
(middle) and the Cantor-Lebesgue singular function (bottom).

and
n

Sp(x) = Z c(fk(x)),

k=1
Tu(@) = 1(&i(2) = 1) - Su(@),
where 1(A) is the indicator function that takes the
value one if argument A is true and zero otherwise.
With these definitions, we have the following

lemma:

Lemma 1.

Tn(z)
vn
holds for almost every z € [0, 1).

Proof. Since the ¢(¢,) are i.i.d. random variables
with mean 0 and variance 2 with respect to Lebesgue
measure on (0,1), the law of the iterated logarithm
[2] implies that

lim sup >1
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. Sy () and we have the following evaluation:
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almost everywhere in (0,1). B 1/3m
Thus in particular, the events S,(x)/v/n >1 I
and S, (z)/v/n < —1 both happen infinitely often. =3" H p(fl@))‘ : Q(fr,ﬁrl(x))
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We now complete the proof of the main theo-
rem. -
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Proof of theorem 1. We first note that F,(z) 23 E ’p({,(x)) ‘
has the following representation: - .
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where 1-—
p(0)=a, p(1)=1-2a, p(2)=a,

q(0)=0, q(1)=a, q2)=1-a.

Using the following relations:

log[3p(0)| = log [3p(2)| = log(30).

In what follows, we assume that a =ay and x

27a? — 54a3
satisfies log ’3}9(1)’ = log ‘3(1 - 2(1)‘ = log %
li L@ o 1
lgl—i}clp \/ﬁ - = log - @ = -2 10g(3a),
From the definition of T),(x), we can take an increas- 1o«
ing sequence {r,} which satisfies
. F,(x) — Fy(xy)
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Namely, F,(z) is non-differentiable at x. From the
previous lemma, we know that

hIan Soli.p n
holds almost everywhere in [0, 1), and so, we can con-
clude that F,(x) is non-differentiable almost every-
where in [0, 1).
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