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Smooth projective toric varieties whose nontrivial nef line bundles are big
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Abstract: For any n � 3, we explicitly construct smooth projective toric n-folds of Picard

number � 5, where any nontrivial nef line bundles are big.
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1. Introduction. The following question is

our main motivation of this note.
Question 1.1. Are there any smooth projec-

tive toric varieties X 6’ Pn such that

@NefðXÞ \ @PEðXÞ ¼ f0g ?

Here, NefðXÞ is the nef cone of X and PEðXÞ is the

pseudo-e�ective cone of X.

By de�nition, the nef cone NefðXÞ is included

in the pseudo-e�ective cone PEðXÞ. We note that
@NefðXÞ \ @PEðXÞ ¼ f0g is equivalent to the condi-

tion that any nontrivial nef line bundles on X are

big.
In this note, we explicitly construct smooth

projective toric threefolds of Picard number � 5 on

which any nontrivial nef line bundles are big. The
main parts of this note are nontrivial examples given

in Section 4. See Examples 4.2 and 4.3. In general, it

seems to be hard to �nd those examples. Therefore, it
must be valuable to describe them explicitly here.

This short note is a continuation and a supplement

of the papers: [F2] and [FP].
Let us see the contents of this note. Section 2 is

a supplement to the toric Mori theory. We introduce

the notion of ‘general’ complete toric varieties. By
the de�nition of ‘general’ projective toric varieties,

it is obvious that the �nal step of the MMP for a

Q-factorial ‘general’ projective toric variety is a
Q-factorial projective toric variety of Picard number

one. It is almost obvious if we understand Reid’s

combinatorial description of toric extremal contrac-
tion morphisms. Moreover, it is easy to check that

any nontrivial nef line bundles on a ‘general’ com-

plete toric variety are always big. In Section 3, we re-

call the basic de�nitions and properties of primitive

collections and primitive relations after Batyrev. By

the result of Batyrev, any smooth projective toric

variety is ‘general’ if and only if it is isomorphic to
the projective space. So, the results obtained in Sec-

tion 2 can not be used to construct examples in Sec-

tion 4. The �rst author �rst considered that there are
plenty of ‘general’ smooth projective toric varieties.

So, he thought that the examples in Section 4 is

worthless. Section 4 is the main part of this note.
We give smooth projective toric threefolds of Picard

number � 5, where any nontrivial nef line bundles

are always big. We note that this phenomenon does
not occur for smooth projective toric surfaces. Let X

be a smooth projective toric surface. Then we can

easily see that there exists a morphism f : X ! P1

if X is not isomorphic to P2. So, the line bundle

f�OP1ð1Þ on X is nef but not big. Let X be a smooth

projective toric variety and let � be the correspond-
ing fan. If � is suf�ciently complicated combinatori-

ally in some sense, then any nontrivial nef line bun-

dles are big. However, we do not know how to de�ne
‘complicated’ fans suitably. Therefore, the explicit

examples in Section 4 seem to be useful. We note

that it is dif�cult to calculate nef cones or pseudo-
e�ective cones for projective (not necessarily toric)

varieties. In the �nal section: Section 5, we collect

miscellaneous results. We explain how to generalize
examples in [FP] and in Section 4 into dimension

n � 4. We also treat Q-factorial projective toric vari-
eties with NefðXÞ ¼ PEðXÞ.

Let us �x the notation used in this note. For the

details, see [R] or [FS]. For the basic results on the
toric geometry, see the standard text books: [MO],

[O], or [Fl].

Notation. We will work over some �xed �eld
k throughout this note. Let X be a complete toric

variety; a 1-cycle of X is a formal sum
P
aiCi with
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complete curves Ci on X, and ai 2 Z. We put

Z1ðXÞ :¼ f1-cycles of Xg;
and

Z1ðXÞR :¼ Z1ðXÞ �R:

There is a pairing

PicðXÞ � Z1ðXÞR ! R

de�ned by ðL; CÞ 7! degC L, extended by bilinearity.
De�ne

N1ðXÞ :¼ ðPicðXÞ �RÞ=�
and

N1ðXÞ :¼ Z1ðXÞR=�;
where the numerical equivalence � is by de�nition
the smallest equivalence relation which makes N1

and N1 into dual spaces.

Inside N1ðXÞ there is a distinguished cone of
e�ective 1-cycles,

NEðXÞ ¼ fZjZ �
X

aiCi with ai 2 R�0g � N1ðXÞ:

It is known that NEðXÞ is a rational polyhedral cone.

A subcone F � NEðXÞ is said to be extremal if

u; v 2 NEðXÞ, uþ v 2 F imply u; v 2 F . The cone
F is also called an extremal face of NEðXÞ. A one-

dimensional extremal face is called an extremal ray.

We de�ne the Picard number �ðXÞ by

�ðXÞ :¼ dimR N
1ðXÞ <1:

An element D 2 N1ðXÞ is called nef if D � 0 on

NEðXÞ.
We de�ne the nef cone NefðXÞ, the ample cone

AmpðXÞ, and the pseudo-e�ective cone PEðXÞ in

N1ðXÞ as follows:

NefðXÞ ¼ fD jD is nefg;

AmpðXÞ ¼ fD jD is ampleg
and

PEðXÞ ¼ fD �
X

aiDi jDi is an effective

Weil divisor and ai 2 R�0g:
It is not dif�cult to see that PEðXÞ is a rational poly-

hedral cone in N1ðXÞ since X is toric. For the usual
de�nition of PEðXÞ, see, for example, [L, De�nition

2.2.25]. It is easy to see that AmpðXÞ � NefðXÞ �
PEðXÞ.

From now on, we assume that X is projective.

Let D be an R-Cartier divisor on X. Then D is called
big if D � Aþ E for an ample R-divisor A and an

e�ective R-divisor E. For the original de�nition of a

big divisor, see, for example, [L, 2.2 Big Line Bundles

and Divisors]. We de�ne the big cone BigðXÞ in

N1ðXÞ as follows:

BigðXÞ ¼ fD jD is bigg:
It is well known that the big cone is the interior of
the pseudo-e�ective cone and the pseudo-e�ective

cone is the closure of the big cone. See, for example,

[L, Theorem 2.2.26].
In [F2] and [FP], we mainly treated non-projec-

tive toric varieties. In this note, we are interested in

projective toric varieties.
2. Supplements to the toric Mori theory.

We introduce the following new notion. It will not

be useful when we construct various examples of
smooth projective toric varieties in Section 4. How-

ever, we include it here for the future usage. By the

simple observations in this section, we know that
the great mass of complete toric varieties have no

nontrivial non-big nef line bundles.

De�nition 2.1. Let X be a complete toric
variety with dimX ¼ n. Let � be the fan corre-

sponding to X. Let Gð�Þ ¼ fv1; � � � ; vmg be the set

of all primitive vectors spanning one dimensional
cones in �. If there exists a relation

ai1vi1þ � � � þ aikvik ¼ 0

such that fi1; � � � ; ikg � f1; � � � ;mg, aij 2 Z>0 for any

1 	 j 	 k with k 	 n, then X is called ‘special’. If X
is not ‘special’, then X is called ‘general’.

Example 2.2. The projective space Pn is

‘general’ in the sense of De�nition 2.1.
Let us introduce the following easy but useful

lemmas for the toric Mori theory. The proofs are ob-

vious. So, we omit them.
Lemma 2.3. Let X be a complete toric variety

and let � : eX ! X be a small projective toric Q-fac-

torialization ðcf. [F1, Corollary 5.9]Þ. Assume that X

is ‘general’ ðresp. ‘special’ Þ. Then eX is also ‘general’

ðresp. ‘special’ Þ.
More generally, we have the following lemma.
Lemma 2.4. Let X and X 0 be complete toric

varieties and let ’ : X aX 0 be a proper birational

toric map. Assume that ’ is an isomorphism in co-

dimension one. Then X is ‘general’ if and only if so

is X 0.
Lemma 2.5. Let X and Z be a complete toric

varieties and let � : X ! Z be a birational toric mor-

phism. Assume that X is ‘general’. Then Z is ‘gen-

eral’. We note that Z is not necessarily ‘special’

even if X is ‘special’.

We have two elementary properties.
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Proposition 2.6. Let X be a complete toric

variety and let f : X ! Y be a proper surjective toric

morphism onto Y . Assume that X is ‘general’ and

that dim Y < dim X. Then Y is a point.

Proof. It is obvious. r
Corollary 2.7. Let X be a complete toric vari-

ety. Assume that X is ‘general’. Let D be a nef Car-

tier divisor on X such that D 6
 0. Then D is big.

Proof. Since D is nef, the linear system jDj
de�nes a proper surjective toric morphism �jDj :

X ! Z. Apply Proposition 2.6 to �jDj : X ! Z.
Then we obtain dimZ ¼ dimX. Therefore, D is

big. r
The next proposition is also obvious. We include

it for the reader’s convenience because it has not

been stated explicitly in the literature. For the de-
tails of the toric Mori theory, see [F1, Section 5] and

[FS].

Proposition 2.8 (MMP for ‘general’ projective
toric varieties). Let X be a Q-factorial projective

toric variety and let B be a Cartier divisor on X

such that B is not pseudo-e�ecitve. Assume that X

is ‘general’. We run the MMP with respect to B.

Then we obtain a sequence of B-negative divisorial

contractions and B-�ips:

X ¼ X0 aX1 a � � �aXi

aXiþ1 a � � �aXl;

where Xl is a Q-factorial projective toric variety with

�ðXlÞ ¼ 1.

Proof. Run the MMP with respect to B, where

B is not pseudo-e�ective, for example, B ¼ KX.

Since B is not pseudo-e�ective, the �nal step is a
Fano contraction Xl ! Z. Since X is ‘general’, Xl is

also ‘general’ by Lemmas 2.4 and 2.5. Therefore, Z

must be a point by Corollary 2.6. This means that
Xl is a Q-factorial projective toric variety with

�ðXlÞ ¼ 1. r
We will see that any smooth projective toric

variety X, which is not isomorphic to the projective

space, is ‘special’ by [B]. See Proposition 3.5 below.
So, the results in this section can not be applied to

smooth projective toric varieties.

2. Primitive collections and relations.

Let us recall the notion of primitive collections and

primitive relations introduced by Batyrev (cf. [B]).

It is very useful to compute some explicit examples
of toric varieties. Note that this section is not in-

dispensable for understanding the examples in Sec-

tion 4.

Let � be a complete non-singular n-dimensional

fan and let Gð�Þ be the set of all primitive genera-
tors of �.

De�nition 3.1 (Primitive collection). A non-

empty subset P ¼ fv1; � � � ; vkg � Gð�Þ is called a
primitive collection if, for each element vi 2 P, the

set P n fvig generates a ðk� 1Þ-dimensional cone in

�, while P does not generate any k-dimensional
cone in �.

De�nition 3.2 (Focus). Let P ¼ fv1; � � � ; vkg
be a primitive collection in Gð�Þ. Let SðPÞ denote
v1 þ � � � þ vk. The focus �ðPÞ of P is the cone in �

of the smallest dimension containing SðPÞ.
De�nition 3.3 (Primitive relation). Let P ¼

fv1; � � � ; vkg be a primitive collection in Gð�Þ and

�ðPÞ its focus. Let w1; � � � ; wm be the primitive
generators of �ðPÞ. Then there exists a unique linear

combination a1w1 þ � � � þ amwm with positive in-

teger coef�cients ai which is equal to v1 þ � � � þ vk.
Then the linear relation v1 þ � � � þ vk � a1w1 � � � � �
amwm ¼ 0 is called the primitive relation associated

with P.
Then we have the description of NEðXÞ by

primitive relations.

Theorem 3.4 (cf. [B, 2.15 Theorem]). Let �
be a projective non-singular fan and X ¼ Xð�Þ the

corresponding toric variety. Then the Kleiman-Mori

cone NEðXÞ is generated by all primitive relations.

The primitive relation which spans an extremal ray

of NEðXÞ is said to be extremal.

Let � be a projective non-singular n-dimen-
sional fan. Then, Batyrev obtained the following im-

portant result.

Proposition 3.5 (cf. [B, 3.2 Proposition]).
There exists a primitive collection P ¼ fv1; � � � ; vkg
in Gð�Þ such that the associated primitive relation

is of the form

v1 þ � � � þ vk ¼ 0:

In other words, the focus �ðPÞ ¼ f0g.
We close this section with an elementary re-

mark.
Remark 3.6. If k ¼ nþ 1 in Proposition 3.5,

then Xð�Þ ’ Pn.

Therefore, a smooth projective toric variety X is
‘general’ if and only if X is isomorphic to the projec-

tive space. By this reason, it is not so easy to con-

struct smooth projective toric varieties on which any
nontrivial nef line bundles are big.

4. Examples. First, let us recall the following
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example, which is not a toric variety. For the details,

see [MM] and [M, p. 67].
Example 4.1 (MM, no. 30 Table 2). Let X be

the blowing-up of P3
C along a smooth conic. Then X

is a smooth Fano threefold with �ðXÞ ¼ 2. It is
known that X has two extremal divisorial contrac-

tions. One contraction is the inverse of the blowing-

up X ! P3. Another one is a contraction of P2 on
X into a smooth point. Therefore, it is not dif�cult

to see that every nef Cartier divisor D 6� 0 is big.

The next example is the main theme of this
short note. It is hard for the non-experts to �nd it.

Therefore, we think it is worthwhile to describe it ex-

plicitly here.
Example 4.2. We put v1 ¼ ð1; 0; 0Þ; v2 ¼

ð0; 1; 0Þ; v3 ¼ ð0; 0; 1Þ, and v4 ¼ ð�1;�1;�1Þ. We
consider the standard fan of P3 generated by

v1; v2; v3, and v4. We subdivide the cone hv1; v2; v4i
as follows: Take a blow-up X1 ! P3 along the vector
v5 ¼ ð1;�1;�2Þ ¼ 3v1 þ v2 þ 2v4. We take a blow-

up X2 ! X1 along the vector v6 ¼ ð1; 0;�1Þ ¼
1
2 ðv1 þ v2 þ v5Þ and a blow-up X3 ! X2 along v7 ¼
ð0;�1;�2Þ ¼ 1

3 ðv2 þ 2v4 þ 2v5Þ. Finally, we take a

blow-up X3 along the vector v8 ¼ ð0; 0;�1Þ ¼
1
2 ðv2 þ v7Þ and obtain X. Then, it is obvious that X
is projective and �ðXÞ ¼ 5. It is easy to see that X is

smooth. In this case, NEðXÞ is spanned by the fol-

lowing �ve extremal primitive relations, v1 þ v2 þ
v5 � 2v6 ¼ 0, v4 þ v5 þ v8 � 2v7 ¼ 0, v2 þ v7 � 2v8 ¼
0, v6 þ v8 � v2 � v5 ¼ 0, and v3 þ v5 � 2v1 � v4 ¼ 0.

This toric variety X is nothing but the one labeled
as [8-10] in [MO, Theorem 9.6]. The picture below

helps us understand the combinatorial data of X.

Claim. There are no projective surjective

toric morphism f : X ! Y with dim Y ¼ 1 or 2.

Proof. The variety X is obtained by successive

blowing-ups of P3 inside the cone hv1; v2; v4i. So, X
does not admit to a morphism to a curve. Thus,

we have to consider the case when Y is a surface.

By considering primitive relations, f : X ! Y must
be induced by the projection Z3 ! Z2 : ðx; y; zÞ 7!
ðx; yÞ because v3 þ v8 ¼ 0. The image of the cone

hv2; v5; v8i is the cone spanned by ð0; 1Þ and ð1;�1Þ.
On the other hand, the image of the cone hv1; v4; v5i
is the cone spanned by ð1; 0Þ and ð�1;�1Þ. There-

fore, there are no surjective morphisms f : X ! Y

with dimY ¼ 2. r
Thus, every nef divisor D 6
 0 is big, that is,

@NefðXÞ \ @PEðXÞ ¼ f0g.
By the following example, the reader under-

stands the advantage of using the toric geometry to
construct examples. We do not know what happens

if we take blow-ups of X in Example 4.1.

Example 4.3. By taking blowing-ups inside
the cone hv5; v7; v8i in Example 4.2, we obtain a

smooth projective toric threefold Xk for any k � 6

such that �ðXkÞ ¼ k and @NefðXkÞ \ @PEðXkÞ ¼
f0g, that is, every nef divisor D 6
 0 on Xk is big.

More explicitly, for example, X6 is the blow-up of X

along u6 ¼ v5 þ v7 þ v8 and Xkþ1 is the blow-up of
Xk along ukþ1 ¼ v5 þ v7 þ uk for k � 6.

We can easily check that any smooth projective

toric threefolds of Picard number 2 	 � 	 4 have
some nontrivial non-big nef line bundles by the clas-

si�cation table in [MO, Theorem 9.6]. For smooth

non-projective toric variety, the following example
will help the reader. It is the most famous example

of smooth complete non-projective toric threefold.

Example 4.4. Let � be the fan whose rays
are spanned by v1 ¼ ð1; 0; 0Þ, v2 ¼ ð0; 1; 0Þ, v3 ¼
ð0; 0; 1Þ, v4 ¼ ð�1;�1;�1Þ, v5 ¼ ð0;�1;�1Þ, v6 ¼
ð�1; 0;�1Þ, v7 ¼ ð�1;�1; 0Þ, and whose maximal
cones are hv1; v2; v3i, hv4; v5; v6i, hv4; v6; v7i,
hv4; v5; v7i, hv1; v2; v5i, hv2; v5; v6i, hv2; v3; v6i,
hv3; v6; v7i, hv1; v3; v7i, hv1; v5; v7i. Then X ¼ Xð�Þ is
the most famous non-projective smooth toric three-

fold with �ðXÞ ¼ 4 obtained by Miyake and Oda.

By removing three two-dimensional walls hv1; v7i,
hv2; v5i, and hv3; v6i from �, we obtain a �opping

contraction f : X ! Y . It is easy to see that Y is a

projective toric threefold with �ðY Þ ¼ 2 and three
ordinary double points. We can check that every nef

divisor D can be written as D ¼ f�D 0 for some nef

divisor D0 on Y . On the other hand, NefðY Þ is a two
dimensional cone and every nef divisor on Y is big.
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Therefore, NefðXÞ is also two-dimensional and all

the nef divisors on X are big. We note that NefðXÞ
is thin in N1ðXÞ by Kleiman’s ampleness criterion

since X is a smooth complete non-projective variety.

The reader can �nd many smooth complete non-
projective toric threefolds X with NefðXÞ ¼ f0g in

[FP].

5. Miscellaneous comments. In this �nal
section, we collect miscellaneous results. First, we

explain how to generalize Examples 4.2 and 4.3 in

dimension � 4.
5.1. We put v1 ¼ ð1; 0; � � � ; 0Þ, v2 ¼

ð0; 1; 0; � � � ; 0Þ, v3 ¼ ð0; 0; 1; 0; � � � ; 0Þ, v4 ¼
ð�1;�1; � � � ; �1Þ 2 N ¼ Zn. We consider w1 ¼
ð0; 0; 0; 1; 0; � � � ; 0Þ, w2 ¼ ð0; 0; 0; 0; 1; 0; � � � ; 0Þ; � � � ;
wn�3 ¼ ð0; � � � ; 0; 1Þ 2 N. By these vectors, we can
construct a fan corresponding to Pn as usual. We

take v5 ¼ 3v1 þ v2 þ 2v4 ¼ ð1;�1;�2; � � � ;�2Þ, v6 ¼
1
2 ðv1 þ v2 þ v5Þ ¼ ð1; 0;�1; � � � ;�1Þ, v7 ¼ 1

3 ðv2 þ
2v4 þ 2v5Þ ¼ ð0;�1;�2; � � � ;�2Þ, and v8 ¼ 1

2 ðv2 þ v7Þ
¼ ð0; 0;�1; � � � ;�1Þ. We take a sequence of blow-ups

X ! X3 ! X2 ! X1 ! Pn

as in Examples 4.2. In this case, the center of each

blow-up is ðn� 3Þ-dimensional. We can easily check
that X is a smooth projective toric n-fold. We note

that v3 þ w1 þ � � � þ wn�3 þ v8 ¼ 0.

Claim. If f : X ! Y is a proper surjective

toric morphism and Y is not a point, then dim Y ¼ n.

Proof of Claim. By considering linear relations

among v1; v2; � � � ; v8; w1; � � � ; wn�3 as in De�nition
2.1, f should be induced by the projection Zn !
Z2 : ðx1; x2; � � � ; xnÞ 7! ðx1; x2Þ if dimY < n. By the

same arguments as in the proof of Claim in Exam-
ple 4.2, it can not happen. Therefore, we obtain

dimY ¼ n. r
Thus, any nontrivial nef line bundles on X are

big.

So, for any ðn; �Þ, where n � 4 and � � 5, we

can construct a smooth projective toric n-fold X

with �ðXÞ ¼ � on which any nontrivial nef line bun-

dles are big (cf. Example 4.3). We leave the details

for the reader’s exercise. The next one is a higher di-
mensional analogue of [FP].

5.2 (Smooth complete toric varieties without

nontrivial nef line bundles). Let X be a smooth
complete toric variety without nontrivial nef line

bundles. We put E ¼ O�kX � L for k � 1, where L
is a nontrivial line bundle on X. We consider
the Pk-bundle � : Y ¼ PXðEÞ ! X. Then Y is a

ðdimX þ kÞ-dimensional complete toric variety. It is

easy to see that Y has no nontrivial nef line bundle.
So, for n � 4, we can construct many n-dimensional

smooth complete toric varieties of Picard number

� 6 without nontrivial nef line bundles by [FP].
Finally, we close this note with an easy result.

We treat the other extreme case: NefðXÞ ¼ PEðXÞ.
Proposition 5.3. Let X be a Q-factorial pro-

jective toric variety with �ðXÞ ¼ �. Assume that

NefðXÞ ¼ PEðXÞ, that is, every e�ective divisor is

nef. Then there is a �nite toric morphism Pn1 � � � �
�Pn� ! X with n1 þ � � � þ n� ¼ dim X. When X is

smooth, X ’ Pn1 � � � � �Pn� with n1 þ � � � þ n� ¼
dim X.

Proof. The condition NefðXÞ ¼ PEðXÞ implies

that every extremal ray of NEðXÞ is a Fano type.
First, we assume that X is smooth. We obtain a

Fano contraction f : X ! Y with �ðY Þ ¼ �ðXÞ � 1,

where Y is a smooth projective toric variety and
NefðY Þ ¼ PEðY Þ. It is well known that X is a projec-

tive space bundle over Y . By the induction, we ob-

tain Y ’ Pn1 � � � � �Pn��1 . Therefore, we can easily
check that X ’ Pn1 � � � � �Pn� and f is the projec-

tion. Lemma 5.4 may help the reader check it.

Next, we just assume that X is a Q-factorial
projective toric variety with NefðXÞ ¼ PEðXÞ. As

above, we have a Fano contraction f : X ! Y with

�ðY Þ ¼ �ðXÞ � 1. In this case, Y is a Q-factorial
projective toric variety with NefðY Þ ¼ PEðY Þ. By

applying the induction, we have a �nite toric surjec-

tive morphism g : W 0 ¼ Pn1 � � � � �Pn��1 ! Y . If we
need, we take a higher model W ¼ Pn1 � � � � �
Pn��1 !W 0 ! Y and can assume that V !W is a

�ber bundle, where V is the normalization of
W �Y X. We note that NefðV Þ ¼ PEðV Þ. Let F be

a general �ber of V !W , �F the associated fan in

the sub-lattice NF � N and Gð�F Þ ¼ fv1; . . . ; v�þ1g.
We remark that fv1; . . . ; v�g is a basis for NF �R.

Fix a basis B for NR such that fv1; . . . ; v�g �
B � Gð�V Þ. For any 1 	 i 	 �, put Ui be the irre-
ducible torus invariant closed subvariety on V asso-

ciated to the cone
P

v2Gð�F Þnfvi;v�þ1gR�0v. Then,

dimUi ¼ dimW þ 1 and Ui !W is surjective. We
can see that Ui is a P1-bundle over W and NefðUiÞ
¼ PEðUiÞ. Therefore, Ui ’W �P1 and Ui !W is

the �rst projection by the previous step. This means
for any v 2 Gð�V Þ nGð�F Þ, v is a linear combina-

tion of elements in B n fv1; . . . ; v�g. By these obser-

vations, we can see that V ’W � F , where F is a
Q-factorial projective toric variety with �ðF Þ ¼ 1.
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Thus, we obtain a desired �nite toric morphism

Pn1 � � � � �Pn� ! X. r
The following property is a key lemma.

Lemma 5.4. Let X be a Q-factorial projective

toric variety with NefðXÞ ¼ PEðXÞ. Let Z be any

irreducible torus invariant closed subvariety of X.

Then Z is a Q-factorial projective toric variety with

NefðZÞ ¼ PEðZÞ.
Proof. It is obvious. r
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