Trace formula and trace identity of twisted Hecke operators on the spaces of cusp forms of weight $k+1 / 2$ and level $32 M$

By Masaru Ueda
Department of Mathematics, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan

(Communicated by Shigefumi Mori, M.J.A., Jan. 13, 2009)

Abstract

Let M be an odd positive integer, χ an even quadratic character defined modulo $32 M$, and ψ a quadratic primitive character of conductor divisible by 8 . Then, we can define twisted Hecke operators $R_{\psi} \tilde{T}\left(n^{2}\right)$ on the space of cusp forms of weight $k+1 / 2$, level $32 M$, and character χ, under certain conditions on the conductors of χ and ψ. This is a specific feature of the case of half-integral weight. We give explicit trace formulas of the twisted Hecke operators and their trace identities.

Key words: Trace formula; twisting operator; half-integral weight; trace identity; Hecke operator; cusp form.

1. Introduction. Let k and N be positive integers with $4 \mid N$ and χ an even quadratic Dirichlet character defined modulo N. We denote the space of cusp forms of weight $k+1 / 2$, level N, and character χ by $S(k+1 / 2, N, \chi)$. Let R_{ψ} be the twisting operator for a quadratic primitive character ψ and $\tilde{T}\left(n^{2}\right)$ the n^{2}-th Hecke operator of weight $k+1 / 2$. In the previous papers [U3] and [U4], we reported trace formulas and trace identities of the twisted Hecke operators $R_{\psi} \tilde{T}\left(n^{2}\right)$ on $S(k+$ $1 / 2, N, \chi)$ for various cases. However, we missed one peculiar case of level $32 M$ in those papers. Let ψ be a quadratic primitive character whose conductor is divisible by 8 . Then $S(k+1 / 2,32 M, \chi)$ is not generally closed under R_{ψ}. But, under certain conditions of χ and ψ, R_{ψ} defines a linear operator on $S(k+1 / 2,32 M, \chi)$ (See Proposition 1 below). This phenomenon is specific to modular forms of half-integral weight. The aim of this paper is to report explicit trace formulas and trace identities in this case. The details will appear in [U5] or another.
2. Notation. We use the same notation as in the previous paper [U1]. See [U1] and [U2] for the details of notation. Here we explain some of symbols for convenience.

Let k, N, and χ be the same as above. Let a be a non-zero integer and b a positive integer. We write $a \mid b^{\infty}$ if every prime factor of a divides b.

We denote by (:) the Kronecker symbol. See

[^0][M, p.82] for a definition of this symbol.

Let \mathbf{H} be the complex upper half-plane. Put $j(\gamma, z)=\left(\frac{-1}{d}\right)^{-1 / 2}\left(\frac{c}{d}\right)(c z+d)^{1 / 2}$ for any $\gamma=$ $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(4)$ and $z \in \mathbf{H}$. Let $\mathfrak{G}(k+1 / 2)$ be the covering group of $G L_{2}^{+}(\mathbf{R})$ (cf. [U1, $\left.\S 0(\mathrm{c})\right]$). For a complex-valued function f on \mathbf{H} and $(\alpha, \phi) \in$ $\mathfrak{G}(k+1 / 2)$, we define a function $f \mid(\alpha, \phi)$ on \mathbf{H} by: $\quad f \mid(\alpha, \phi)(z)=\phi(z)^{-1} f(\alpha z)$. By $\quad \Delta_{0}(N, \chi)=$ $\Delta_{0}(N, \chi)_{k+1 / 2}$, we denote the subgroup of $\mathfrak{G}(k+$ $1 / 2)$ consisting of all pairs $\gamma^{*}:=(\gamma, \phi)$, where $\gamma=$ $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(N)$ and $\phi(z)=\chi(d) j(\gamma, z)^{k+1 / 2}$.

Let ρ be any Dirichlet character. We denote the conductor of ρ by $\mathfrak{f}(\rho)$ and for any prime number p, the p-primary component of ρ by ρ_{p}. Furthermore we set $\rho_{A}:=\prod_{p \mid A} \rho_{p}$ for an arbitrary positive integer A. Here p runs over all prime divisors of A.

Let V be a finite-dimensional vector space over C. We denote the trace of a linear operator T on V by $\operatorname{tr}(T ; V)$.
3. Twisting operator. From now on, we assume that $N=32 M$ with an odd positive integer M and that $\mathfrak{f}\left(\chi_{2}\right)$ divides 4 .

Let ψ be a quadratic primitive character of conductor r such that the conductor of ψ_{2} is equal to 8. Then we can express the conductor r as $r=8 L$ with a squarefree odd positive integer L.

From now on until the end of this paper, we assume the condition $L^{2} \mid M$.

Proposition 1. Under the above assumptions, the twisting operator R_{ψ} for ψ

$$
\begin{gathered}
f=\sum_{n \geqq 1} a(n) q^{n} \mapsto f \mid R_{\psi}:=\sum_{n \geqq 1} a(n) \psi(n) q^{n} \\
(q:=\exp (2 \pi \sqrt{-1} z), z \in \mathbf{H})
\end{gathered}
$$

defines a linear operator of $S(k+1 / 2,32 M, \chi)$.
Proof. Take any $f \in S(k+1 / 2,32 M, \chi)$. From $S(k+1 / 2,32 M, \chi) \subset S(k+1 / 2,64 M, \chi)$ and [Sh, Lemma 3.6], we see that $f \mid R_{\psi} \in S(k+1 / 2,64 M$, $\chi)$. Since any element of $S(k+1 / 2,64 M, \chi)$ is fixed by all elements of $\Delta_{0}(64 M, \chi)$, it is sufficient for checking the statement to show that $f \mid R_{\psi}$ is fixed by the representative $\left(\begin{array}{cc}1 & 0 \\ 32 M & 1\end{array}\right)^{*}$ of $\Delta_{0}(32 M, \chi) / \Delta_{0}(64 M, \chi)$.

Now, we put

$$
\mathfrak{g}(\psi):=\sum_{i \bmod r} \psi(i) \exp (2 \pi \sqrt{-1} i / r)
$$

and

$$
\xi(u):=\left(\left(\begin{array}{ll}
r & u \\
0 & r
\end{array}\right), 1\right) \in \mathfrak{G}(k+1 / 2)
$$

for any integer u.
Observing that $\bar{\psi}=\psi$ (because ψ is quadratic), we can express R_{ψ} as follows (cf. [Sh, Lemma 3.6]):

$$
\mathfrak{g}(\psi) f\left|R_{\psi}=\sum_{\substack{u \bmod r \\(u, r)=1}} \psi(u) f\right| \xi(u) .
$$

Hence
(1) $\quad \mathfrak{g}(\psi) f \left\lvert\, R_{\psi}\left(\begin{array}{cc}1 & 0 \\ 32 M & 1\end{array}\right)^{*}\right.$

$$
=\sum_{\substack{u \bmod r \\
(u, r)=1}} \psi(u) f \left\lvert\, \xi(u)\left(\begin{array}{cc}
1 & 0 \\
32 M & 1
\end{array}\right)^{*} .\right.
$$

For any $u \in(\mathbf{Z} / r \mathbf{Z})^{\times}$, take $v \in(\mathbf{Z} / r \mathbf{Z})^{\times}$such that
(2)

$$
\left\{\begin{array}{l}
v \equiv u(\bmod L) \\
v \equiv u+4 \quad(\bmod 8)
\end{array}\right.
$$

By straightforwards caluculation, we have

$$
\begin{aligned}
\gamma_{0} & :=\left(\begin{array}{ll}
r & u \\
0 & r
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
32 M & 1
\end{array}\right)\left(\begin{array}{cc}
r & v \\
0 & r
\end{array}\right)^{-1} \\
& =\left(\begin{array}{cc}
1+32 M u / r & r^{-2}(r(u-v)-32 M u v) \\
32 M & 1-32 M v / r
\end{array}\right) \\
& \in \Gamma_{0}(32 M)
\end{aligned}
$$

and also

$$
\xi(u)\left(\begin{array}{cc}
1 & 0 \tag{3}\\
32 M & 1
\end{array}\right)^{*} \xi(v)^{-1}
$$

$$
=\left(\gamma_{0},(32 M(z-v / r)+1)^{k+1 / 2}\right) .
$$

Moreover, we can calculate $j\left(\gamma_{0}, z\right)$ as follows: First, since $32 M v / r=4(M / L) v \equiv 0(\bmod 4)$, we have $\left(\frac{-1}{1-32 M v / r}\right)=1$. Next, observing that $1-4(M / L) v \equiv$ $1-4 \equiv 5(\bmod 8)$, we can calculate as follows:

$$
\begin{aligned}
& \left(\frac{32 M}{1-32 M v / r}\right)=\left(\frac{32 M}{1-4(M / L) v}\right) \\
& \quad=\left(\frac{2 M / L^{2}}{1-4(M / L) v}\right) \\
& =\left(\frac{2}{1-4(M / L) v}\right)\left(\frac{M / L^{2}}{1-4(M / L) v}\right) \\
& \quad=\left(\frac{2}{1-4(M / L) v}\right)\left(\frac{M / L^{2}}{1}\right) \\
& \quad=\left(\frac{2}{1-4(M / L) v}\right)=\left(\frac{2}{5}\right)=-1
\end{aligned}
$$

Hence, we have
(4) $j\left(\gamma_{0}, z\right)=-(32 M z+1-32 M v / r)^{1 / 2}$.

On the other hand, since $\mathfrak{f}\left(\chi_{2}\right) \mid 4$ and $\mathfrak{f}\left(\chi_{M}\right) \mid$ $\prod_{p \mid M} p \mid(M / L)$, we have

$$
\begin{aligned}
& \chi(1-32 M v / r)=\chi(1-4(M / L) v) \\
& \quad=\chi_{2}(1-4(M / L) v) \chi_{M}(1-4(M / L) v) \\
& \quad=\chi_{2}(1) \chi_{M}(1)=1
\end{aligned}
$$

Therefore by (3), (4), and the above, we get
(5) $\quad \xi(u)\left(\begin{array}{cc}1 & 0 \\ 32 M & 1\end{array}\right)^{*} \xi(v)^{-1}=\left(\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),-1\right) \gamma_{0}^{*}$.

Here $\quad \gamma_{0}^{*}:=\left(\gamma_{0}, \chi(1-32 M v / r) j\left(\gamma_{0}, z\right)^{2 k+1}\right) \in$ $\Delta_{0}(32 M, \chi)$. Then, from (1) and (5), we have
(6)

$$
\begin{aligned}
\mathfrak{g}(\psi) f \left\lvert\, R_{\psi}\left(\begin{array}{cc}
1 & 0 \\
32 M & 1
\end{array}\right)^{*}\right. & =-\sum_{\substack{u \bmod r \\
(u, r)=1}} \psi(u) f \mid \gamma_{0}^{*} \xi(v) \\
& =-\sum_{\substack{u \bmod r \\
(u, r)=1}} \psi(u) f \mid \xi(v)
\end{aligned}
$$

Moreover, we can show from (2)

$$
\begin{align*}
\psi(v) & =\psi_{2}(v) \psi_{L}(v)=\psi_{2}(u+4) \psi_{L}(u) \tag{7}\\
& =-\psi_{2}(u) \psi_{L}(u)=-\psi(u)
\end{align*}
$$

Since the correspondence $u \mapsto v$ is a permutation of $(\mathbf{Z} / r \mathbf{Z})^{\times}$, we finally obtain

$$
\mathfrak{g}(\psi) f\left|R_{\psi}\left(\begin{array}{cc}
1 & 0 \\
32 M & 1
\end{array}\right)^{*}=\sum_{\substack{v \bmod r \\
(v, r)=1}} \psi(v) f\right| \xi(v)
$$

$$
=\mathfrak{g}(\psi) f \mid R_{\psi}
$$

The proof is completed.
In the case of $k=1$, we need to make a modification. In this case, the following is wellknown (cf. [U1, $\S 0(\mathrm{c})]$). The space $S(3 / 2,32 M, \chi)$ contains a subspace $U(32 M ; \chi)$ which corresponds to a space of Eisenstein series via the Shimura correspondence. And the subspace $U(32 M ; \chi)$ is generated by theta series of special type. Let $V(32 M ; \chi)$ be the orthogonal complement of $U(32 M ; \chi)$ in $S(3 / 2,32 M, \chi)$ with respect to the Petersson inner product. Then it is also well-known that $V(32 M ; \chi)$ corresponds to a space of cusp forms via the Shimura correspondence. Hence we need to consider the subspace $V(32 M ; \chi)$ in place of $S(3 / 2,32 M, \chi)$ in the case of $k=1$.

The subspaces $U(32 M ; \chi)$ and $V(32 M ; \chi)$ are closed under the twisting operator R_{ψ} (See [U5] for a proof and refer also to [U2, p.94]). Hence R_{ψ} gives a linear operator also on the subspace $V(32 M ; \chi)$. Moreover, the n^{2}-th Hecke operators $\tilde{T}\left(n^{2}\right),(n, 32 M)=1$, also define linear operators on the subspace $V(32 M ; \chi)$ (cf. [U1, p.508]).

Thus for any positive integer n with $(n, 32 M)=1$, we can consider the twisted Hecke operator $R_{\psi} \tilde{T}\left(n^{2}\right)$ on the spaces $S(k+1 / 2,32 M, \chi)$ (if $k \geqq 2$) and $V(32 M ; \chi)$ (if $k=1$) (cf. [U2, p.86]).
4. Trace formula. Now we state an explicit trace formula of the twisted Hecke operator $R_{\psi} \tilde{T}\left(n^{2}\right)$.

Theorem 1. Let notation and assumptions be the same as above. Let $\tilde{T}\left(n^{2}\right)=\tilde{T}_{k+1 / 2,32 M, \chi}\left(n^{2}\right)$ be the n^{2}-th Hecke operator for a positive integer n with $(n, 32 M)=1$ (cf. [U1, §0(c)]). Then explicit trace formulas of the twisted Hecke operator $R_{\psi} \tilde{T}\left(n^{2}\right)$ on the spaces $S(k+1 / 2,32 M, \chi)$ (if $k \geqq 2)$ and $V(32 M ; \chi)($ if $k=1)$ are given as follows:

$$
\begin{aligned}
& \operatorname{tr}\left(R_{\psi} \tilde{T}\left(n^{2}\right) ; S(k+1 / 2,32 M, \chi)\right)=t(p)+t(e) \\
& \quad(\text { if } k \geqq 2) \\
& \operatorname{tr}\left(R_{\psi} \tilde{T}\left(n^{2}\right) ; V(32 M ; \chi)\right)=t(p)+t(e)+t(d) \\
& \quad(\text { if } k=1)
\end{aligned}
$$

Here $t(p), t(e), t(d)$ are the contributions from the parabolic, elliptic, and degree part respectively. They are given by the formulas (1.1)-(1.3) below.

We use the following notation in those formulas. Let \mathbf{Z}_{+}be the set of all positive integers. For a real number $x,[x]$ means the greatest integer less
than and equal to x. For a prime number p, let $\operatorname{ord}_{p}(\cdot)$ be the p-adic additive valuation with $\operatorname{ord}_{p}(p)=1$ and $|\cdot|_{p}$ the p-adic absolute value which is normalized with $|p|_{p}=p^{-1}$. Put $\nu=\nu_{p}:=$ $\operatorname{ord}_{p}(M)$ for any odd prime number p. And we decompose the level $N=32 M$ with respect to L as follows:

$$
\begin{aligned}
& N=32 L_{0} L_{2}, \quad L_{0}>0, \quad L_{2}>0 \\
& L_{0} \mid L^{\infty}, \quad\left(L_{2}, 2 L\right)=1
\end{aligned}
$$

Then we have $L_{2}=N \prod_{p \mid 2 L}|N|_{p}$.

$$
\begin{align*}
t(p)= & (-1)^{k} \psi(-1)^{k} n^{k-1} \chi(n) \tag{1.1}\\
& \times \begin{cases}\chi_{2}(-1), & \text { if } n \equiv \psi(-1) \quad(\bmod 4) \\
1, & \text { if } n \equiv-\psi(-1) \quad(\bmod 4)\end{cases} \\
& \times \prod_{p \mid L} p^{[(\nu-1) / 2]} \\
& \times \prod_{p \mid L_{2}}\left(p^{[\nu / 2]}+\left(\frac{-8 L n}{p}\right)^{\nu} p^{[(\nu-1) / 2]}\right) \\
& \times \sum_{0<a \mid n_{0}} h^{\prime}\left(-8 L n / a^{2}\right)
\end{align*}
$$

Here the notation is as follows: we decompose $n=$ $n_{0}{ }^{2} n_{1}\left(n_{0}, n_{1} \in \mathbf{Z}_{+}, n_{1}:\right.$ squarefree $)$. And let $\mathcal{O}(-d)$ be the order of discriminant $-d$ in the imaginary quadratic number field $\mathbf{Q}(\sqrt{-d}), h(-d)$ the number of proper ideal classes of the order $\mathcal{O}(-d)$, and $w(-d)$ a half of the number of units in $\mathcal{O}(-d)$. Then put $h^{\prime}(-d):=h(-d) / w(-d)$.

$$
\begin{align*}
t(e)= & -\psi(-1)^{k} r^{1-k} \chi_{L}(-n) \times \prod_{p \mid L} p^{[(\nu-1) / 2]} \tag{1.2}\\
& \times 2 \chi_{2}(\psi(-1)) \\
& \times \sum_{\substack{0<s<2 \sqrt{r n} \\
s:(*), s \equiv 0(8)}} \pi_{k}(s, r n) h^{\prime}(D) \alpha_{D}\left(m_{1}^{\prime}\right) \\
& \times \prod_{p \mid L_{2}}\left(p^{-\operatorname{ord}_{p}(s)} n_{p}\left(\theta_{p}\right)\right)
\end{align*}
$$

Here the condition $(*)$ of s is the following

$$
\begin{equation*}
\operatorname{ord}_{p}(s) \geqq\left[\left(\nu_{p}+1\right) / 2\right] \tag{*}
\end{equation*}
$$

for all prime divisors p of L.
The other notation is defined as follows: We decompose $s^{2}-4 r n=m_{1}{ }^{2} D$ with $m_{1} \in \mathbf{Z}_{+}$and a discriminant D of an imaginary quadratic field. We put $m_{1}^{\prime}:=m_{1} \prod_{p \mid N}\left|m_{1}\right|_{p}$ and $\theta_{p}:=\operatorname{ord}_{p}\left(s m_{1}\right)$ for a
prime number p. Moreover we put a constant $\pi_{k}(s, r n):=\left(x^{2 k-1}-y^{2 k-1}\right) /(x-y)$, where x, y are two roots of the quadratic equation $X^{2}-s X+$ $r n=0$. For a positive integer A, we define a constant $\alpha_{D}(A)$ by
$\alpha_{D}(A):=\prod_{q \mid A}\left\{\left(q^{e+1}-1\right)-\left(\frac{D}{q}\right)\left(q^{e}-1\right)\right\} /(q-1)$,
where $A=\prod_{q \mid A} q^{e}$ is the prime decomposition of A. The constant $h^{\prime}(D)$ is the same as in the parabolic part $t(p)$. Finally, the constants $n_{p}\left(\theta_{p}\right)\left(p \mid L_{2}\right)$ are given by the table below.
Table of $\boldsymbol{n}_{p}\left(\boldsymbol{\theta}_{\boldsymbol{p}}\right)$.
Case (1) $\quad\left(p \mid L_{2}\right.$ and $\left.p \mid s\right)$

$$
\chi_{p}(r) \chi_{p}(D) \times n_{p}\left(\theta_{p}\right)
$$

$$
= \begin{cases}p^{\theta_{p}}\left(p^{[\nu / 2]}+\left(\frac{D}{p}\right)^{\nu} p^{[(\nu-1) / 2]}\right) \\ & \text { if } \theta_{p} \geqq[(\nu+1) / 2] . \\ \left(1+\left(\frac{D}{p}\right)\right) p^{2 \theta_{p}}, & \text { if } \theta_{p} \leqq[(\nu-1) / 2] .\end{cases}
$$

Case (2) $\quad\left(p \mid L_{2}, p \nmid s\right.$ and $\left.p \mid D\right)$

$$
\chi_{p}(r) \times n_{p}\left(\theta_{p}\right)
$$

$$
=\left\{\begin{aligned}
&\left\{\left(p^{[\nu / 2]}+p^{[(\nu-1) / 2]}\right) p^{\theta_{p}+1}-\left(p^{\nu}+p^{\nu-1}\right)\right\}(p-1)^{-1} \\
& \text { if } \theta_{p} \geqq[\nu / 2] \\
& 0, \text { if } \theta_{p} \leqq[\nu / 2]-1
\end{aligned}\right.
$$

Case (3) $\quad\left(p \mid L_{2}, p \nmid s\right.$ and $\left.p \nmid D\right)$

$$
\chi_{p}(r) \times n_{p}\left(\theta_{p}\right)
$$

$$
=\left\{\begin{array}{c}
\left(p-\left(\frac{D}{p}\right)\right)\left(p^{[\nu / 2]}+p^{[(\nu-1) / 2]}\right)\left(p^{\theta_{p}}-p^{[\nu / 2]}\right) \\
\times(p-1)^{-1}+\left(p^{[\nu / 2]}+\left(\frac{D}{p}\right)^{\nu} p^{[(\nu-1) / 2]}\right) p^{[\nu / 2]} \\
\text { if } \theta_{p} \geqq[(\nu+1) / 2] \\
\left(1+\left(\frac{D}{p}\right)\right) p^{2 \theta_{p}}, \quad \text { if } \theta_{p} \leqq[(\nu-1) / 2]
\end{array}\right.
$$

$$
\begin{align*}
& t(d)=\psi(-1) \chi_{2}(\psi(-1)) \chi_{L}(-n) \chi_{L_{2}}(r) \tag{1.3}\\
& \times \prod_{p \mid n} \frac{p^{\tau+1}-1}{p-1} \\
& \times \prod_{p \mid L_{2}}\left\{\left[\frac{\nu_{p}-\alpha_{p}}{2}\right]+1+\left[\frac{\nu_{p}+\alpha_{p}-1}{2}\right]\left(\frac{-r n}{p}\right)\right\} .
\end{align*}
$$

Here the notation is as follows: Let $n=\prod_{p \mid n} p^{\tau}$ be
the prime decomposition of n. For any prime divisor p of L_{2}, the constant α_{p} is defined by

$$
\chi_{p}=(\bar{p})^{\alpha_{p}}, \quad\left(\alpha_{p}=0,1\right)
$$

This is possible, because χ is a quadratic character and p is odd.
5. Trace identity. Using the above explicit trace formula, we can obtain trace identities between the twisted Hecke operators $R_{\psi} \tilde{T}\left(n^{2}\right)$ and linear combinations of Hecke operators of integral weight and Atkin-Lehner involutions.

We prepare a little more notation for the statement of trace identity.

First we put

$$
N_{0}:=\prod_{p \mid L} p^{2\left[\left(\nu_{p}-1\right) / 2\right]+1}
$$

Here p runs over all prime divisors of L.
Next, let A be any positive integer. For any odd prime number p and any integers $a, b(0 \leqq a \leqq$ $\operatorname{ord}_{p}(A) / 2$), we put

$$
\begin{aligned}
& \lambda_{p}\left(\chi_{p}, \operatorname{ord}_{p}(A) ; b, a\right) \\
& := \begin{cases}1, & \text { if } a=0 \\
1+\left(\frac{-b}{p}\right), & \text { if } 1 \leqq a \leqq\left[\left(\operatorname{ord}_{p}(A)-1\right) / 2\right] \\
\chi_{p}(-b), & \text { if } \operatorname{ord}_{p}(A) \text { is even } \\
& \text { and } a=\operatorname{ord}_{p}(A) / 2 \geqq 1\end{cases}
\end{aligned}
$$

Then for any integer b and any square integer c, we put

$$
\Lambda_{\chi}(\psi, A ; b, c):=\prod_{\substack{p \mid A \\(p, r)=1}} \lambda_{p}\left(\chi_{p}, \operatorname{ord}_{p}(A) ; b, \operatorname{ord}_{p}(c) / 2\right)
$$

Here p runs over all prime divisors of A which are prime to r.

Furthermore, let B be a positive divisor of A such that $B \mid r^{\infty}$ and $(A / B, B)=1$. For all positive integers n such that $(n, 32 M)=1$, we define

$$
\begin{aligned}
& \mathscr{C}_{\psi}[2 k, n ; A, B, \chi]=\mathscr{C}_{\psi}[A, B, \chi] \\
& :=\sum_{\substack{0<N_{1} \mid A \\
N_{1}=\square,\left(N_{1}, r\right)=1}} \Lambda_{\chi}\left(\psi, A ; r n, N_{1}\right) \\
& \quad \times \operatorname{tr}\left(W\left(B N_{1}\right) T(n) ; S\left(2 k, N_{1} N_{2}\right)\right),
\end{aligned}
$$

where N_{1} runs over all square positive divisors of A which are prime to r and $N_{2}:=A \prod_{p \mid N_{1}}|A|_{p} . T(n)$ is the Hecke operator of weight $2 k$ and $W\left(B N_{1}\right)$ is the Atkin-Lehner involution. $S\left(2 k, N_{1} N_{2}\right)$ is the space
of cusp forms of weight $2 k$ and level $N_{1} N_{2}$. See [U1, $\S 0(\mathrm{~b})$ and $\S 3]$ for the details of these definitions.

Remark. All spaces occuring in the definition of $\mathscr{C}_{\psi}[A, B, \chi]$ are contained in the space $S(2 k, A)$.

Finally, $\chi_{r}^{\prime}:=\prod_{p \mid N,(p, r)=1} \chi_{p}$, where p runs over all prime divisors of $N=32 M$ which are prime to r. Then we put

$$
c(k, n ; \psi, \chi)=c(\psi, \chi):=\psi(-1)^{k} \chi_{r}(n) \chi_{r}^{\prime}(-r)
$$

Under this notation, we can state trace identities of the twisted Hecke operators $R_{\psi} \tilde{T}\left(n^{2}\right)$.

Theorem 2. Let notation and assumptions be the same as above. For all positive integers n such that $(n, 32 M)=1$, we have the following trace identity:

$$
\begin{aligned}
& \left\{\begin{array}{ll}
\operatorname{tr}\left(R_{\psi} \tilde{T}\left(n^{2}\right) ; S(k+1 / 2,32 M, \chi)\right) & \text { if } k \geqq 2 \\
\operatorname{tr}\left(R_{\psi} \tilde{T}\left(n^{2}\right) ; V(32 M ; \chi)\right) & \text { if } k=1
\end{array}\right\} \\
& =c(\psi, \chi) \times\left\{\begin{array}{ll}
\chi_{2}(-1), & \text { if } n \equiv \psi(-1)(\bmod 4) \\
1, & \text { if } n \equiv-\psi(-1) \quad(\bmod 4)
\end{array}\right\} \\
& \quad \times \mathscr{C}_{\psi}\left[8 N_{0} L_{2}, 8 N_{0}, \chi\right] .
\end{aligned}
$$

6. Concluding remark. We can expect to establish a theory of newforms of half-integral weight by using the above trace indentities. See [U6] for related results for the case of level 2^{m}.

References

[M] T. Miyake, Modular forms, Translated from the Japanese by Yoshitaka Maeda, Springer, Berlin, 1989.
[Sh] G. Shimura, On modular forms of half integral weight, Ann. of Math. (2) 97 (1973), 440-481.
[U1] M. Ueda, The decomposition of the spaces of cusp forms of half-integral weight and trace formula of Hecke operators, J. Math. Kyoto Univ. 28 (1988), no. 3, 505-555.
[U2] M. Ueda, The trace formulae of twisting operators on the spaces of cusp forms of halfintegral weight and some trace relations, Japan. J. Math. (N.S.) 17 (1991), no. 1, 83135.
[U3] M. Ueda, Trace formula of twisting operators of half-integral weight in the case of even conductors, Proc. Japan Acad. Ser. A Math. Sci. 79 (2003), no. 4, 85-88.
[U4] M. Ueda, Trace identities of twisted Hecke operators on the spaces of cusp forms of halfintegral weight, Proc. Japan Acad. Ser. A Math. Sci. 80 (2004), no. 7, 131-135.
[U5] M. Ueda, The trace formulae of twisting operators on the spaces of cusp forms of halfintegral weight and trace identities II. (in preparation).
[U6] M. Ueda, Newforms of half-integral weight in the case of level 2^{m}. (Preprint). http://www. math.nara-wu.ac.jp/personal/ueda/index_e. html

[^0]: 2000 Mathematics Subject Classification. Primary 11F37; Secondary 11F25.

