Trace formula and trace identity of twisted Hecke operators on the spaces of cusp forms of weight k + 1/2 and level 32M

By Masaru UEDA

Department of Mathematics, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan

(Communicated by Shigefumi MORI, M.J.A., Jan. 13, 2009)

Abstract: Let M be an odd positive integer, χ an even quadratic character defined modulo 32M, and ψ a quadratic primitive character of conductor divisible by 8. Then, we can define twisted Hecke operators $R_{\psi}\tilde{T}(n^2)$ on the space of cusp forms of weight k + 1/2, level 32M, and character χ , under certain conditions on the conductors of χ and ψ . This is a specific feature of the case of half-integral weight. We give explicit trace formulas of the twisted Hecke operators and their trace identities.

Key words: Trace formula; twisting operator; half-integral weight; trace identity; Hecke operator; cusp form.

1. Introduction. Let k and N be positive integers with $4 \mid N$ and χ an even quadratic Dirichlet character defined modulo N. We denote the space of cusp forms of weight k + 1/2, level N, and character χ by $S(k+1/2, N, \chi)$. Let R_{ψ} be the twisting operator for a quadratic primitive character ψ and $T(n^2)$ the n^2 -th Hecke operator of weight k + 1/2. In the previous papers [U3] and [U4], we reported trace formulas and trace identities of the twisted Hecke operators $R_{\psi}T(n^2)$ on S(k+ $1/2, N, \chi$) for various cases. However, we missed one peculiar case of level 32M in those papers. Let ψ be a quadratic primitive character whose conductor is divisible by 8. Then $S(k+1/2, 32M, \chi)$ is not generally closed under R_{ψ} . But, under certain conditions of χ and ψ , R_{ψ} defines a linear operator on $S(k+1/2, 32M, \chi)$ (See Proposition 1 below). This phenomenon is specific to modular forms of half-integral weight. The aim of this paper is to report explicit trace formulas and trace identities in this case. The details will appear in [U5] or another.

2. Notation. We use the same notation as in the previous paper [U1]. See [U1] and [U2] for the details of notation. Here we explain some of symbols for convenience.

Let k, N, and χ be the same as above. Let a be a non-zero integer and b a positive integer. We write $a \mid b^{\infty}$ if every prime factor of a divides b.

We denote by $(\frac{1}{2})$ the Kronecker symbol. See

[M, p.82] for a definition of this symbol.

Let **H** be the complex upper half-plane. Put $j(\gamma, z) = (\frac{-1}{d})^{-1/2} (\frac{c}{d})(cz+d)^{1/2}$ for any $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(4)$ and $z \in \mathbf{H}$. Let $\mathfrak{G}(k+1/2)$ be the covering group of $GL_2^+(\mathbf{R})$ (cf. [U1, §0(c)]). For a complex-valued function f on **H** and $(\alpha, \phi) \in \mathfrak{G}(k+1/2)$, we define a function $f|(\alpha, \phi)$ on **H** by: $f|(\alpha, \phi)(z) = \phi(z)^{-1}f(\alpha z)$. By $\Delta_0(N, \chi) = \Delta_0(N, \chi)_{k+1/2}$, we denote the subgroup of $\mathfrak{G}(k+1/2)$ consisting of all pairs $\gamma^* := (\gamma, \phi)$, where $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$ and $\phi(z) = \chi(d)j(\gamma, z)^{k+1/2}$.

Let ρ be any Dirichlet character. We denote the conductor of ρ by $\mathfrak{f}(\rho)$ and for any prime number p, the p-primary component of ρ by ρ_p . Furthermore we set $\rho_A := \prod_{p|A} \rho_p$ for an arbitrary positive integer A. Here p runs over all prime divisors of A.

Let V be a finite-dimensional vector space over C. We denote the trace of a linear operator T on V by tr(T; V).

3. Twisting operator. From now on, we assume that N = 32M with an odd positive integer M and that $f(\chi_2)$ divides 4.

Let ψ be a quadratic primitive character of conductor r such that the conductor of ψ_2 is equal to 8. Then we can express the conductor r as r = 8Lwith a squarefree odd positive integer L.

From now on until the end of this paper, we assume the condition $L^2 \mid M$.

Proposition 1. Under the above assumptions, the twisting operator R_{ψ} for ψ

²⁰⁰⁰ Mathematics Subject Classification. Primary 11F37; Secondary 11F25.

M. UEDA

[Vol. 85(A),

$$f = \sum_{n \ge 1} a(n)q^n \mapsto f \mid R_{\psi} := \sum_{n \ge 1} a(n)\psi(n)q^n$$
$$(q := \exp(2\pi\sqrt{-1}z), \ z \in \mathbf{H})$$

defines a linear operator of $S(k+1/2, 32M, \chi)$.

Proof. Take any $f \in S(k + 1/2, 32M, \chi)$. From $S(k + 1/2, 32M, \chi) \subset S(k + 1/2, 64M, \chi)$ and [Sh, Lemma 3.6], we see that $f|R_{\psi} \in S(k + 1/2, 64M, \chi)$. Since any element of $S(k + 1/2, 64M, \chi)$ is fixed by all elements of $\Delta_0(64M, \chi)$, it is sufficient for checking the statement to show that $f|R_{\psi}$ is fixed by the representative $\begin{pmatrix} 1 & 0 \\ 32M & 1 \end{pmatrix}^*$ of $\Delta_0(32M, \chi)/\Delta_0(64M, \chi)$.

Now, we put

$$\mathfrak{g}(\psi) := \sum_{i \bmod r} \psi(i) \exp(2\pi \sqrt{-1} i/r)$$

and

$$\xi(u) := \left(\begin{pmatrix} r & u \\ 0 & r \end{pmatrix}, 1 \right) \in \mathfrak{G}(k+1/2)$$

for any integer u.

Observing that $\overline{\psi} = \psi$ (because ψ is quadratic), we can express R_{ψ} as follows (cf. [Sh, Lemma 3.6]):

$$\mathfrak{g}(\psi) f \mid R_{\psi} = \sum_{\substack{u \bmod r \\ (u,r)=1}} \psi(u) f \mid \xi(u).$$

Hence

(1)
$$\mathfrak{g}(\psi) f \mid R_{\psi} \begin{pmatrix} 1 & 0 \\ 32M & 1 \end{pmatrix}^{*}$$

= $\sum_{\substack{u \mod r \\ (u,r)=1}} \psi(u) f \mid \xi(u) \begin{pmatrix} 1 & 0 \\ 32M & 1 \end{pmatrix}^{*}.$

For any $u \in (\mathbf{Z}/r\mathbf{Z})^{\times}$, take $v \in (\mathbf{Z}/r\mathbf{Z})^{\times}$ such that

(2)
$$\begin{cases} v \equiv u \pmod{L}, \\ v \equiv u+4 \pmod{8}. \end{cases}$$

By straightforwards caluculation, we have

$$\begin{split} \gamma_0 &:= \binom{r \ u}{0 \ r} \binom{1 \ 0}{32M \ 1} \binom{r \ v}{0 \ r}^{-1} \\ &= \binom{1 + 32Mu/r \ r^{-2}(r(u - v) - 32Muv)}{32M \ 1 - 32Mv/r} \\ &\in \Gamma_0(32M) \end{split}$$

and also

(3)
$$\xi(u) \begin{pmatrix} 1 & 0 \\ 32M & 1 \end{pmatrix}^* \xi(v)^{-1}$$

$$= \left(\gamma_0, (32M(z - v/r) + 1)^{k+1/2}\right).$$

Moreover, we can calculate $j(\gamma_0, z)$ as follows: First, since $32Mv/r = 4(M/L)v \equiv 0 \pmod{4}$, we have $(\frac{-1}{1-32Mv/r}) = 1$. Next, observing that $1 - 4(M/L)v \equiv 1 - 4 \equiv 5 \pmod{8}$, we can calculate as follows:

$$\left(\frac{32M}{1-32Mv/r}\right) = \left(\frac{32M}{1-4(M/L)v}\right)$$
$$= \left(\frac{2M/L^2}{1-4(M/L)v}\right)$$
$$= \left(\frac{2}{1-4(M/L)v}\right) \left(\frac{M/L^2}{1-4(M/L)v}\right)$$
$$= \left(\frac{2}{1-4(M/L)v}\right) \left(\frac{M/L^2}{1}\right)$$
$$= \left(\frac{2}{1-4(M/L)v}\right) = \left(\frac{2}{5}\right) = -1.$$

Hence, we have

(4)
$$j(\gamma_0, z) = -(32Mz + 1 - 32Mv/r)^{1/2}$$

On the other hand, since $\mathfrak{f}(\chi_2) \mid 4$ and $\mathfrak{f}(\chi_M) \mid \prod_{p \mid M} p \mid (M/L)$, we have

$$\chi(1 - 32Mv/r) = \chi(1 - 4(M/L)v)$$

= $\chi_2(1 - 4(M/L)v) \chi_M(1 - 4(M/L)v)$
= $\chi_2(1) \chi_M(1) = 1.$

Therefore by (3), (4), and the above, we get

(5)
$$\xi(u) \begin{pmatrix} 1 & 0 \\ 32M & 1 \end{pmatrix}^* \xi(v)^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, -1 \gamma_0^*.$$

Here $\gamma_0^* := (\gamma_0, \chi(1 - 32Mv/r)j(\gamma_0, z)^{2k+1}) \in \Delta_0(32M, \chi)$. Then, from (1) and (5), we have

(6)

$$\mathfrak{g}(\psi) f \mid R_{\psi} \begin{pmatrix} 1 & 0\\ 32M & 1 \end{pmatrix}^* = -\sum_{\substack{u \bmod r\\(u,r)=1}} \psi(u) f \mid \gamma_0^* \xi(v)$$
$$= -\sum_{\substack{u \bmod r\\(u,r)=1}} \psi(u) f \mid \xi(v).$$

Moreover, we can show from (2)

(7)
$$\psi(v) = \psi_2(v)\psi_L(v) = \psi_2(u+4)\psi_L(u)$$

= $-\psi_2(u)\psi_L(u) = -\psi(u).$

Since the correspondence $u \mapsto v$ is a permutation of $(\mathbf{Z}/r\mathbf{Z})^{\times}$, we finally obtain

$$\mathfrak{g}(\psi) f \mid R_{\psi} \begin{pmatrix} 1 & 0 \\ 32M & 1 \end{pmatrix}^{*} = \sum_{\substack{v \, \text{mod} \, r \\ (v,r) = 1}} \psi(v) f \mid \xi(v)$$

No. 2]

$$= \mathfrak{g}(\psi) f \mid R_{\psi}.$$

The proof is completed.

In the case of k = 1, we need to make a modification. In this case, the following is wellknown (cf. [U1, §0(c)]). The space $S(3/2, 32M, \chi)$ contains a subspace $U(32M; \chi)$ which corresponds to a space of Eisenstein series via the Shimura correspondence. And the subspace $U(32M; \chi)$ is generated by theta series of special type. Let $V(32M; \chi)$ be the orthogonal complement of $U(32M; \chi)$ in $S(3/2, 32M, \chi)$ with respect to the Petersson inner product. Then it is also well-known that $V(32M; \chi)$ corresponds to a space of cusp forms via the Shimura correspondence. Hence we need to consider the subspace $V(32M; \chi)$ in place of $S(3/2, 32M, \chi)$ in the case of k = 1.

The subspaces $U(32M; \chi)$ and $V(32M; \chi)$ are closed under the twisting operator R_{ψ} (See [U5] for a proof and refer also to [U2, p.94]). Hence R_{ψ} gives a linear operator also on the subspace $V(32M; \chi)$. Moreover, the n^2 -th Hecke operators $\tilde{T}(n^2)$, (n, 32M) = 1, also define linear operators on the subspace $V(32M; \chi)$ (cf. [U1, p.508]).

Thus for any positive integer n with (n, 32M) = 1, we can consider the twisted Hecke operator $R_{\psi}\tilde{T}(n^2)$ on the spaces $S(k + 1/2, 32M, \chi)$ (if $k \ge 2$) and $V(32M; \chi)$ (if k = 1) (cf. [U2, p.86]).

4. Trace formula. Now we state an explicit trace formula of the *twisted Hecke operator* $R_{\psi}\tilde{T}(n^2)$.

Theorem 1. Let notation and assumptions be the same as above. Let $\tilde{T}(n^2) = \tilde{T}_{k+1/2,32M,\chi}(n^2)$ be the n^2 -th Hecke operator for a positive integer n with (n, 32M) = 1 (cf. [U1, §0(c)]). Then explicit trace formulas of the twisted Hecke operator $R_{\psi}\tilde{T}(n^2)$ on the spaces $S(k+1/2, 32M, \chi)$ (if $k \geq 2$) and $V(32M; \chi)$ (if k = 1) are given as follows:

$$\begin{aligned} &\operatorname{tr}(R_{\psi}T(n^{2});S(k+1/2,32M,\chi)) = t(p) + t(e),\\ &(if\ k \geq 2).\\ &\operatorname{tr}(R_{\psi}\tilde{T}(n^{2});V(32M;\chi)) = t(p) + t(e) + t(d),\\ &(if\ k = 1). \end{aligned}$$

Here t(p), t(e), t(d) are the contributions from the parabolic, elliptic, and degree part respectively. They are given by the formulas (1.1)-(1.3) below.

We use the following notation in those formulas. Let \mathbf{Z}_+ be the set of all positive integers. For a real number x, [x] means the greatest integer less than and equal to x. For a prime number p, let $\operatorname{ord}_p(\cdot)$ be the p-adic additive valuation with $\operatorname{ord}_p(p) = 1$ and $|\cdot|_p$ the p-adic absolute value which is normalized with $|p|_p = p^{-1}$. Put $\nu = \nu_p := \operatorname{ord}_p(M)$ for any odd prime number p. And we decompose the level N = 32M with respect to L as follows:

$$N = 32L_0L_2, \quad L_0 > 0, \quad L_2 > 0,$$

$$L_0 \mid L^{\infty}, \quad (L_2, 2L) = 1.$$

Then we have $L_2 = N \prod_{p|2L} |N|_p$.

$$t(p) = (-1)^{k} \psi(-1)^{k} n^{k-1} \chi(n)$$

$$\times \begin{cases} \chi_{2}(-1), & \text{if } n \equiv \psi(-1) \pmod{4}, \\ 1, & \text{if } n \equiv -\psi(-1) \pmod{4}, \end{cases}$$

$$\times \prod_{p|L} p^{[(\nu-1)/2]}$$

$$\times \prod_{p|L_{2}} \left(p^{[\nu/2]} + \left(\frac{-8Ln}{p}\right)^{\nu} p^{[(\nu-1)/2]} \right)$$

$$\times \sum_{0 < a|n_{0}} h'(-8Ln/a^{2}).$$

Here the notation is as follows: we decompose $n = n_0^2 n_1$ $(n_0, n_1 \in \mathbb{Z}_+, n_1$: squarefree). And let $\mathcal{O}(-d)$ be the order of discriminant -d in the imaginary quadratic number field $\mathbb{Q}(\sqrt{-d}), h(-d)$ the number of proper ideal classes of the order $\mathcal{O}(-d)$, and w(-d) a half of the number of units in $\mathcal{O}(-d)$. Then put h'(-d) := h(-d)/w(-d).

(1.2)

$$t(e) = -\psi(-1)^{k} r^{1-k} \chi_{L}(-n) \times \prod_{p|L} p^{[(\nu-1)/2]} \times 2 \chi_{2}(\psi(-1)) \times \sum_{\substack{0 < s < 2\sqrt{rn} \\ s:(*), s \equiv 0 \ (8) \\ s:(*), s \equiv 0 \ (8) \\ \times \prod_{p|L_{2}} (p^{-\operatorname{ord}_{p}(s)} n_{p}(\theta_{p})).$$

Here the condition (*) of s is the following

(*)
$$\operatorname{ord}_p(s) \ge [(\nu_p + 1)/2]$$

for all prime divisors p of L .

The other notation is defined as follows: We decompose $s^2 - 4rn = m_1^2 D$ with $m_1 \in \mathbb{Z}_+$ and a discriminant D of an imaginary quadratic field. We put $m'_1 := m_1 \prod_{p|N} |m_1|_p$ and $\theta_p := \operatorname{ord}_p(sm_1)$ for a

prime number p. Moreover we put a constant $\pi_k(s, rn) := (x^{2k-1} - y^{2k-1})/(x-y)$, where x, y are two roots of the quadratic equation $X^2 - sX + rn = 0$. For a positive integer A, we define a constant $\alpha_D(A)$ by

$$\alpha_D(A) := \prod_{q|A} \left\{ (q^{e+1} - 1) - \left(\frac{D}{q}\right)(q^e - 1) \right\} / (q - 1),$$

where $A = \prod_{q|A} q^e$ is the prime decomposition of A. The constant h'(D) is the same as in the parabolic part t(p). Finally, the constants $n_p(\theta_p)$ $(p \mid L_2)$ are given by the table below.

Table of $n_p(\theta_p)$.

Case (1)
$$(p \mid L_2 \text{ and } p \mid s)$$

 $\chi_p(r)\chi_p(D) \times n_p(\theta_p)$

$$= \begin{cases} p^{\theta_p} \left(p^{[\nu/2]} + \left(\frac{D}{p}\right)^{\nu} p^{[(\nu-1)/2]} \right), \\ \text{if } \theta_p \ge [(\nu+1)/2]. \\ \left(1 + \left(\frac{D}{p}\right)\right) p^{2\theta_p}, \text{ if } \theta_p \le [(\nu-1)/2]. \end{cases}$$

Case (2) $(p \mid L_2, p \nmid s \text{ and } p \mid D)$ $\gamma_n(r) \times n_n(\theta_n)$

$$= \begin{cases} \{(p^{[\nu/2]} + p^{[(\nu-1)/2]})p^{\theta_p+1} - (p^{\nu} + p^{\nu-1})\}(p-1)^{-1}, \\ \text{if } \theta_p \ge [\nu/2]. \\ 0, \quad \text{if } \theta_p \le [\nu/2] - 1. \end{cases}$$

Case (3)
$$(p \mid L_2, p \nmid s \text{ and } p \nmid D)$$

 $\chi_p(r) \times n_p(\theta_p)$

$$= \begin{cases} \left(p - \left(\frac{D}{p}\right)\right) \left(p^{[\nu/2]} + p^{[(\nu-1)/2]}\right) \left(p^{\theta_p} - p^{[\nu/2]}\right) \\ \times (p-1)^{-1} + \left(p^{[\nu/2]} + \left(\frac{D}{p}\right)^{\nu} p^{[(\nu-1)/2]}\right) p^{[\nu/2]}, \\ \text{if } \theta_p \ge [(\nu+1)/2]. \\ \left(1 + \left(\frac{D}{p}\right)\right) p^{2\theta_p}, \quad \text{if } \theta_p \le [(\nu-1)/2]. \end{cases}$$

$$\begin{split} t(d) &= \psi(-1) \, \chi_2(\psi(-1)) \, \chi_L(-n) \, \chi_{L_2}(r) \\ &\times \prod_{p \mid n} \frac{p^{\tau+1} - 1}{p - 1} \\ &\times \prod_{p \mid L_2} \left\{ \left[\frac{\nu_p - \alpha_p}{2} \right] + 1 + \left[\frac{\nu_p + \alpha_p - 1}{2} \right] \left(\frac{-rn}{p} \right) \right\}. \end{split}$$

Here the notation is as follows: Let $n = \prod_{p|n} p^{\tau}$ be

the prime decomposition of n. For any prime divisor p of L_2 , the constant α_p is defined by

$$\chi_p = \left(\frac{-}{p}\right)^{\alpha_p}, \quad (\alpha_p = 0, 1).$$

This is possible, because χ is a quadratic character and p is odd.

5. Trace identity. Using the above explicit trace formula, we can obtain trace identities between the twisted Hecke operators $R_{\psi}\tilde{T}(n^2)$ and linear combinations of Hecke operators of integral weight and Atkin-Lehner involutions.

We prepare a little more notation for the statement of trace identity.

First we put

$$N_0 := \prod_{p|L} p^{2[(\nu_p - 1)/2] + 1}.$$

Here p runs over all prime divisors of L.

Next, let A be any positive integer. For any odd prime number p and any integers a, b $(0 \leq a \leq \operatorname{ord}_p(A)/2)$, we put

$$\begin{split} \lambda_p(\chi_p, \operatorname{ord}_p(A); b, a) \\ &:= \begin{cases} 1, & \text{if } a = 0, \\ 1 + \left(\frac{-b}{p}\right), & \text{if } 1 \leq a \leq [(\operatorname{ord}_p(A) - 1)/2], \\ \chi_p(-b), & \text{if } \operatorname{ord}_p(A) \text{ is even} \\ & \text{and } a = \operatorname{ord}_p(A)/2 \geq 1. \end{cases} \end{split}$$

Then for any integer b and any *square* integer c, we put

$$\Lambda_{\chi}(\psi,A;b,c) := \prod_{\substack{p|A \ (p,r)=1}} \lambda_p(\chi_p,\mathrm{ord}_p(A);b,\mathrm{ord}_p(c)/2).$$

Here p runs over all prime divisors of A which are prime to r.

Furthermore, let *B* be a positive divisor of *A* such that $B \mid r^{\infty}$ and (A/B, B) = 1. For all positive integers *n* such that (n, 32M) = 1, we define

$$\begin{split} \mathscr{C}_{\psi}[2k,n;A,B,\chi] &= \mathscr{C}_{\psi}[A,B,\chi] \\ &\coloneqq \sum_{\substack{0 < N_1 \mid A \\ N_1 = \Box, \ (N_1,r) = 1}} \Lambda_{\chi}(\psi,A;rn,N_1) \\ &\times \operatorname{tr}(W(BN_1)T(n);S(2k,N_1N_2)), \end{split}$$

where N_1 runs over all square positive divisors of Awhich are prime to r and $N_2 := A \prod_{p|N_1} |A|_p$. T(n) is the Hecke operator of weight 2k and $W(BN_1)$ is the Atkin-Lehner involution. $S(2k, N_1N_2)$ is the space of cusp forms of weight 2k and level N_1N_2 . See [U1, §0(b) and §3] for the details of these definitions.

Remark. All spaces occuring in the definition of $\mathscr{C}_{\psi}[A, B, \chi]$ are contained in the space S(2k, A).

Finally, $\chi'_r := \prod_{p \mid N, (p,r)=1} \chi_p$, where p runs over all prime divisors of N = 32M which are prime to r. Then we put

$$c(k,n;\psi,\chi) = c(\psi,\chi) := \psi(-1)^k \chi_r(n) \chi_r'(-r).$$

Under this notation, we can state trace identities of the twisted Hecke operators $R_{\psi}\tilde{T}(n^2)$.

Theorem 2. Let notation and assumptions be the same as above. For all positive integers n such that (n, 32M) = 1, we have the following trace identity:

$$\begin{cases} \operatorname{tr}(R_{\psi}\tilde{T}(n^{2}); S(k+1/2, 32M, \chi)) & \text{if } k \geq 2 \\ \operatorname{tr}(R_{\psi}\tilde{T}(n^{2}); V(32M; \chi)) & \text{if } k = 1 \end{cases}$$
$$= c(\psi, \chi) \times \begin{cases} \chi_{2}(-1), & \text{if } n \equiv \psi(-1) \pmod{4} \\ 1, & \text{if } n \equiv -\psi(-1) \pmod{4} \end{cases}$$
$$\times \mathscr{C}_{\psi}[8N_{0}L_{2}, 8N_{0}, \chi].$$

6. Concluding remark. We can expect to establish a theory of newforms of half-integral weight by using the above trace indentities. See [U6] for related results for the case of level 2^m .

References

- [M] T. Miyake, *Modular forms*, Translated from the Japanese by Yoshitaka Maeda, Springer, Berlin, 1989.
- [Sh] G. Shimura, On modular forms of half integral weight, Ann. of Math. (2) **97** (1973), 440–481.
- [U1] M. Ueda, The decomposition of the spaces of cusp forms of half-integral weight and trace formula of Hecke operators, J. Math. Kyoto Univ. 28 (1988), no. 3, 505–555.
- [U2] M. Ueda, The trace formulae of twisting operators on the spaces of cusp forms of halfintegral weight and some trace relations, Japan. J. Math. (N.S.) **17** (1991), no. 1, 83– 135.
- [U3] M. Ueda, Trace formula of twisting operators of half-integral weight in the case of even conductors, Proc. Japan Acad. Ser. A Math. Sci. 79 (2003), no. 4, 85–88.
- [U4] M. Ueda, Trace identities of twisted Hecke operators on the spaces of cusp forms of halfintegral weight, Proc. Japan Acad. Ser. A Math. Sci. 80 (2004), no. 7, 131–135.
- [U5] M. Ueda, The trace formulae of twisting operators on the spaces of cusp forms of halfintegral weight and trace identities II. (in preparation).
- [U6] M. Ueda, Newforms of half-integral weight in the case of level 2^m. (Preprint). http://www. math.nara-wu.ac.jp/personal/ueda/index_e. html