Nos. 9-10]

Proc. Japan Acad., 83, Ser. A (2007) 161

On theta correspondences for Eisenstein series
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Abstract:

There are three types of parabolic subgroups in Sp(2, R). In this paper we show

that the Eisenstein series with respect to the Siegel parabolic subgroup corresponds to the
Eisenstein series with respect to the Jacobi parabolic subgroup by theta correspondences.

Key words:

As usual we put g[z] = ‘zgz, T, = Sp(n,Z). We
denote the Siegel upper half space of degree n by
H,,, that is,

(1) H,={Z=U+iV e M,(C)
U,V € M,(R),'Z =2,V >0}.

For Z=U+iV € Hy withU =ReZ,V =Im Z and
for

we define a theta function by

(2) O(Z,F,g) = >
X1
X = T ,
471X,
X1, Xy € Myo(Z),
x € My2(Z),
det X5 odd

exp(mi tr(F[X]U + iH,[X]V).

Here H, = H[p(g)] and for g € G = Sp(2,R), p(g) is
defined as follows:

p(9)X =tgXg

denoting
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Z 0 a c¢/2 —e
- —a 0 -b —¢/2
X=1c |for X=

/2 b 0 d
e ¢2 —-d 0

We note that p(gh) = p(h)p(g) for g,h € G. Put

(n) A B

as usual. Then from [1] we obtain
O(yZ, F,g) = |det(CZ + D)’ j(v, 2)O(Z, F’ ),

for v = (élv IB;) € To(4) = T (4). Here j(v, Z) =

0:(2)/05(Z) with 05(Z) = >
(L'E]Wz_l(z)
for the transformation formula of ©(Z, F,g) with

respect to g, an easy direct calculation shows that
O(Z,F,vgk) =0O©(Z,F,g) for ve A’ ke SO4)N
Sp(2,R), if we put

C =0 mod N}

exp(2miZ[x]). As

* % 0
0 = 0 O
B) A=qvely= mod 2 3,
* % *x 0
%k ok %
1
2 1 —1
(4) w= ) JA'=w Aw.
1/2

We use the following standard notations for Z =

(Z :,) € H, and for v = (é, ZB;) € Sp(2,R):

7" =7,vZ = (AZ + B)(CZ + D).
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Further let

I\(TL):{’}/:(A B)er
00 C D n

*

0:0},

Py = € Sp(2,R)

*
0 0 0 =«

If we put, for z € Hy, Z € H,,
(5) E(z,5) = >

a b (D (1)
. 4 er\riM

g1(0,2) ez + d| % Im 2,
where
ji(0,2) = 0(02)/0(2)
with Riemann’s theta

exp(2miz?z), and put
> exp(
z€Z

function

(6) GB(sz782) =
> B62) %) [i0:7)
YEP;MTo(4)\Io(4)
det(Im~2)*(Im(v2)") ",
then we have
G~B(’}/Z, S, 52) = (77 Z)G~B(27 S, 82)
for y € Tg(4). As a double sum with respect to a,7,
the series defining Gp(Z, s, s2) by (6), (5) converges
absolutely in
(7) Cy = {(S, 82) S CQ
|3/4 < Resy, 1 +Resy < Res}
(see [2, Satz2.8]). Gp(Z, s, s) is the Eisenstein series
with respect to the minimal parabolic subgroup

of T'g(4). The purpose of this paper is to compute
the following integral:

(8) I(s,82,9) =
/ G~B(Z53782)®(Z’F7g)
T'o(4)\Ha
(det V) 32U dv

where we denote Z =U + iV and d(xl ‘T2) -
Ty X3

dxy dzo drs. The convergence of this integral follows
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from that of the succeeding integrals (11), (12). We
call an integral

(9) / F(2)0(Z,F, g)(det V) */2dU av
To(4\Hy
the theta integral for F(Z) in this paper. The theta
integral (8) for Gp gives a correspondence between
Eisenstein series on Sp(2,R) and those on its
metaplectic cover. We note that theta integrals do
not always converge, since ©(Z,F,g) does not
vanish at all boundary components. Unfolding the
integral (8) as usual, we obtain the expression

/ 02, F.qB(Z" )
P/ﬁF()(4)\H2
det(Im Z)***(Im Z*)~*dUdV

:/E(T,S_Q)’U_S(UU/
D
dudv dvdv' dzdy

(10)

- y2)573/26(Z7 Fa g)

where 7= u+ v, 7 =u+, Z=

(T 2)ma

D:

z =1z + 1y,

u+iv e T{V (4)\Hy,

) x+iy € (Z+Z7)\C,

2
0<u’<1,v’<%

! /
(U7U7vav7$ay

Therefore we obtain

(11) 1(878279) =

/ F(T)E(7,5)v 2dudv

Iy (4)\H,

with
(12)  f(r)= [ O(Z,F,g)t* * dudydudt

D,
where T=u+iv, z=xz+iy, T =u+w, V=

T z
y2/v+t7Z:<Z T,> and

D? = {(ul>taxay)

x+ iy € (Z+ Z71)\C,
0<u <1,0<t<o0 |’

Unfolding the integral in (11), we have

/ F()v= 32 dudo.

rUNH,

(13)  I(s,82,9) =
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Since O(iV, F, g) = O(|V|™? exp(—ctr V) for V > 0
with a certain constant ¢ > 0, (11), (12) converge
absolutely for Resy > 2,Res > 3. To go further,
it is more convenient to introduce another theta
function ©(Z, S, g). ©(Z, 5, g) is defined as follows:

0(z,8,9) = Z
Xi
X=| =z |,
X
X1, Xy € Mys(Z),
r € Mi15(Z),
det Xy odd
exp(mi tr(S[X|U + i KY[X]V)),

(14)

where

K9 = K[/ (g)] and p is defined by p'(9)X =*gXg
denoting

a
0 a ¢ -—e
b
~ —a 0 —-b —c
X=1]c| for X=
—-c b 0
e ¢ —d 0

It is easy to see
p'(g9) = Wi ' p(g)Wn,
H{p(g)][W2] = K[ (wg)]
for g € Sp(2,R), w in (14) and for

1 1

(15)

W, = 2 ,

Therefore we get

(16)

O(Z,F,g) = ©(Z,S,wg).

Changing the variables z,y for z,y/v, the integra-
tions with respect to u, v/, z in (12), (13) imply that
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we have only to consider X in the definition ~(1{1)
of @(Z,:g,g), such that X is of the form (A, B)
and S[(A, B)] =0 when we replace ©(Z, F, g) with

X
©(Z,5,g)in (12). If X = | z | = (A, B) satisfies
Xo
the condition in the summation of (14) and
S[(A, B)] =0, A, B must be of the following form:

o 0 [[(m,n)]J
I P

om0 O

where k,j,l,m,n € Z;m,l, k odd; k,m > 0; (m,n) =

=0 é) and  heANA  with A=
{0’0': (61 g) € A}. Therefore we have

(18) I(s,s2,9) :/D3 Z

h € A\A; k,m > 0;
k,j,l,m,n € Z;
m, 1,k odd; (m,n) =1
exp(—m tr(KY [;47“ EL]V)t573/2dtv5271/2dyd11,

where A,,B, are defined in V=

(v v 2) and
vy t4+ovy

D3 ={(v,t,)]0 <v,0 <y <1,0<t< oo}

(17),

Put
RN (0 0
1) T_<yﬁ \/¥>’ Bl_(o k;J)’
B 0 I[(m,n)]J
Al‘(w[(m,n)}) ji )
and
(20) Al = \vA; +y\/oBy, B, = VB,
then
(21)  tr(K9[(Ap, By)]V)

= te(K™[(Ay, B)T)) = tr(K"[(4}, B)))).

We note that for any alternating matrix A of
degree 4
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(22) 5[,21]:1/2tr(,4(_0E ]g)tA(g —OE)>,

(23)  K[A] =1/2tr(A'A)

1 0
where F = <0 1).

For Z = X +1iY € H,, we hereafter put

(24) g=gz:<§ if)(f—/ \/;_1)

From (23) we can replace hg with gz where
7' =hZ = hgi = hgzi = X' +1Y’ in the further
expressions. Since

(25)  Bllgz] = Vit(det Y’)_1/2<8 kOJ>,
(26)  Ajlgz] = (detY")™"
( 0 I[(m, mﬁp)

JUm VYY) T )
where y = X'l[(m,n)] + Jl[(m,n)| X" T + ky + 3,
we have
(27) tr(KY[(An, Bp)]V) = (det Y") ™"

WY (m,n)))* + vy + K1)
by (17), (21), (23). In (18) interchanging the order

of integration and summation, extending the inter-
val of the integration with respect to y to (—oo, 00)
as usual, and changing y to 3/, we obtain

(28)  T(s,50,0) = S
h € A\A; k,m > 0;
k,l,m,n € Z;

m, 1, k odd; (m

/ / / exp(—m(det V')~

WP (V' (m,n)]) + vy + K1)
57324t 2 dudy

-z

h € A\A; k,m > 0;

n) =1

k,l,m,n € Z;
I,m, k odd, ( )=1
(det Y7) 1/2/ / exp(—m(det V')
W (Y'['(m,n)))* + k1))

732 dtv™  do

[Vol. 83(A),

= 21 205 (25 — 1)(a(282)
(s —1/2)T'(s2)
> (detY’)r
h € Ag\A
S (lm
m,n € 7,
m > 0,(m,2n) =1

with ((s) = (1 —27%)((s). We are ready to state
our theorem. For a function f(z 4+ iy) on H; and

v — |Y|1/2<(12 ;/35)/9 f;i) we denote f(Y) =

n)]) 7

f(x +1iy). For an Eisenstein series G(z,s) =
s gt hz,s) = 2G(-1/(22), )
(2n,m):1,m>0‘ nz+m
and
(29) GB(sz752)
Z det(ImvZ2)*h(Im(~Z), 253).
YEA\A

Then we obtain

Theorem 1. ForResy; > 2,Res > 1+ Resy,

/ GB(Z, 5,59)0(Z, F,w  gw)
To(4)\Hs
(det V) 32U av
= 272D (5 — 1/2)0(sy)
(28 — 1)((289)Gp(W, s, 59)

with Z =U +1iV and W € Hs.

The right-hand side of the equality in
Theorem 1 has the meromorphic continuation
by [2]. [5] contains many results concerning analytic
properties of éB(Z,S,SQ). However, we do not use
them in this paper because, in order to prove our
next theorem, we need only absolute convergences
of Eisenstein series with respect to three types
of paraboric subgroups (see [2-4]) in addition to
Fourier expansions of Eisenstein series of one
complex variable. To rewrite Gp(Z,s,s;) in a
different form, put

(30) E(z,s) = >

a b
a—(c d)eri)\rg”(n

lez + d| > Tm 2°.



Nos. 9-10]

Then, using the notation just above Theorem 1, we
have

(31)  Gp(Z.s,:)= Y

~eIrP\Ly(4)

i, 2) " det(Im~2)*+,

E(Im~Z,s — s9)

This rewriting is justified by the abusolute con-
vergence, stated above (7), of G~B(Z7S,82) and
hereafter we consider that (31) is the definition of
G(Z,S,SQ).

Let us investigate the behavior of (sy — s+
1)Gp(Z,s,55) when sy —s+1 is a negative real
and approaches to 0. Since the constant term of
the Fourier expansion of E(z,s) is

vt Val(s —1/2)¢(2s — 1) e
I'(s)¢(2s) ’

for any constant ¢ and 1< s < c¢ there exists a
positive constant C; such that

(33)  (s—1)E(zs)
<Ci((s =Dy + (s = 1)¢(2s = 1))
uniformly on

D={z=zx+iycHy | |z| <1/2,]7] > 1}.

(32)

Thus, for o € 'y,
(34) (s—1)E(zs) < Ci((s —1)Im(c2)°
+(s—1)¢(2s—1))
<Ci((s =1)E(z,c)+ (s —1)¢(2s — 1))
uniformly in z € 0~'D. Therefore, for z € Hy,
(35) (s—1)E(z ) < Ci((s —1)E(z,c¢)
+ (s —1)¢(2s —1)).

Assuming 1 <s— sy <c¢ and substituting s— sy
for s in (35), the abusolute convergence of a double
sum éB(Z, s, —1—c¢), that of Eisenstein series
with respect to the Sigel parabolic subgroup (see [3]
for instance) and the inequality (35) show that
(so — s+ 1)Gp(Z,s,s9), defined by (31) as a sum
with respec to <, converges uniformly in 1<
s — s9 < c¢. Changing the order of the limiting and
the summation and using the Fourier expansion of
E(z,s), we obtain, for Ims > 4,

lim1 (sa —s+ l)éB(Z, 8, 89)
Sg—8§——1—

= 31 'Gs(Z, ),

(36)

where
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Gs(Z, S) =

i 2) " det(Im~y2)* 1?2
~elN\Ty(4)

(37)

is the Eisenstein series with respect to the Siegel
parabolic subgroup. The same thing holds for
Gp(Z,s,s7). Denote the fundamental domain of
Fél)(2) by D;. Then, for 1<s<e¢, h(zs)=
2°G(—1/(2z), s) defined just before Theorem 1 has
an estimate

(38)  [(s = 1)h(z,s)|
< Co(y' +y (Im(=1/2))" +1)
where (5 is a constant independent of s and z € D..
Thus, in the same way as before, we have
(39) (s = 1)h(z,s)|
< Cy(h(z,¢) + h(—1/(22),c+ 1).
Therefore, since the constant term of the Fourier

expansion of h(z, s) = 2°G(—1/(2z),s) is
VA = 1/2)6(25 = 1)

o I'(s)¢2(2s) ’

we have

(41) lim (52— s+ 1)GB(Z.5,52)
=-3r'G,(Z,s)

where

(42) Gi(Z,s) = Z

’YGAPIP]\A
det(Im~2)* ' (Im(y2)") 2!

is the Eisenstein series with respect to the Jacobi
parabolic subgroup. The theta integral, defined in
(9), for Gs(Z,s) converges for Tms > 4 in view of
the estimate stated just after (13). This combined
with (35) and the convergence of the theta integral
for Gp(Z,s,5s—1—c¢) permit changing the order
of the limiting and the integration. Therefore we
obtain

Theorem 2. Forlms >4

/ Gs(Z,5)0(Z, F,uw ' gw)
To(4)\Haz
(det V)~*%qU av
= 2 232D (s — 1/2)[(s — 1)
(25 — 1)G(2s —2)G (W, s)

with Z =U 4+ 1V and W € H,.
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We note that the theta integrl in Theorem 2
can directly be calculated without limiting process.
We can also investigate the behavior of éB(Z, S, 89),
Gp(Z, s, s9) when sy approaches to 1/2. But, in this
cace, the theta integral does not converge and some
modifications of the statement are needed. So, we
do not go further in this topic.
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