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101. Concircular Geometry III. Theory of Curves.

By Kentaro YANo.
Mathematical Institute, Tokyo Imperial University.
(Comm. by S. KAKEYA, M.IA.,, Nov. 12, 1940.)

In the two recent papers “ Concircular Geometry I, and IIP,” we
have considered concircular transformations g,,=p%,, of a Riemannian
metric ds?=g,,du“du’, that is to say, conformal transformations g, =
0%9,, with the function p satisfying

Puv-— o y_PA {3} —pupt+= g“"pappg,,, PGy »

where p, denotes o log p/ou” and {21} the three-index symbols of Chris-
toffel formed with g,,, and we have discussed the integrability condi-
tions of these partial differential equations.

The purpose of the present note is to develop the theory of curves
in the concircular geometry.

§$1. PFrenet formulae. Let us consider a curve u’(s) in a Riemann
space, s being the curve length measured from a fixed point on the
curve, and form the vector
V‘ &62 5,“1 a?uu 32uv

= »+.__

(1.1) os? Yo o

where Bi denotes the covariant differentiation along the curve.
S
If we effect a conformal transformation of the metric

(1.2) O = P Juv 5
the vector V* will be transformed into

8u” ou’” ou’
13 [ 1 o’ ap,,
(1.3) p3 + " o5 s T os

Hence, if the conformal transformation (1.2) is a concircular one,
that is to say, if the function p satisfies

(1.4) Puv=PYu »
the equations (1.3) become
= 1
(1.5) Vi=—V?4,
o

which shows that the direction defined by the vector V% is invariant
under a concircular transformation.

1) K. Yano: Concircular Geometry I, Proc. 16 (1940), 195-200, and Concircular
Geometry II, Proc. 16 (1940), 354-360.
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Putting

5,“1
(1.6) =1
Vi= kv‘ ,
2

where

1
(EP=g.,V*V",
we can see that

HpV — PV — LV —
.7 97" 1, 977 0 and 9w7"7 1,

and that the law of transformations of 71)‘ and 727‘ under a concircular
transformation (1.2) is given by

11 a1

==y and =7t
p 1 p 2

respectively. The vector ;7‘ being transformed by (1.8), the covariant

(1.8)

"‘Ql
|

derivative %« 727‘ of 727‘ along the curve is transformed by the following
equations
i-eL[i Ay g v]
(1.9) 51 7 Las 74707 |
from which we have

NEISIEY -
?VB_Z o 77”382 +p.7

or multiplying by ?‘=l7‘.
—l- A _3_ v A v
(1.10) 3"2’ ﬁ[”?”as2+?”"?]’
Subtracting (1.10) from (1.9), we get the equations

-1 == O = __[ 2
(1'11) 0s Z ? 7 0s 2 08 2 ? 717,, 0s Z
which show that the direction defined by the vector

D
1.12 = “——
( ) Dsz 632 ?}W

is invariant under a concircular transformation.
From equations (1.7) and (1.12), we have

D . D
3 } v/ )
97 Ds 0, 957 s 1 0.

Thus we see that the concircularly invariant direction given by

D

the vector T);Z‘ is orthogonal to the both of concircularly invariant
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directions given by the vectors ?‘ and 77‘. Thus putting

(1.13) D =7 =12m‘,
S 2 3
where
2, D D _,
(1.14) (k)z—guy (7)“ ) (E 727 ) ’
we have
(1.15) g,,,vy”bri"=b‘a,, (a,6=1,2,3).

Under a concircular transformation, the vectors ;}‘, ;7" and sv‘ being
transformed by
i1 g =1 -a____
(1.16) 7 p?, 7= P2 and 7

respectively, we can see by the same process as used above that the
vector defined by

D 3 0
1.17 == 9,7
( ) Ds;Z os ? ? 0s Z
is transformed as follows
D_, 1D
1.18 — ===,
(1.18) Dil 2 Ds?

and that the vector %Z‘ satisfies the equations

D _ z By oD, _
I Ds ) =0, k+gu»g 7 =0, 97" 537 =0,
or
2 D 2 D )
V] v v | — v L
(L19) Iw] (’“Z +DSZ) 0, 9wy (kz+DsZ 0,

2 D
2 v v)—
g“"z (kz + Ds Z) 0,

which show that the concircularly invariant direction given by the

vector k?} + g * is orthogonal to the three concircularly invariant

directions given by ?, Z and Z“. Thus putting

i D A Jopd
kZ + Dsz 4
or
2 3
(1.20) D pie i,
Ds 3 2 1
where
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we have
(1.21) guu’i"’z"=3ab (a,6=1,2,3,4).
Furthering this process, finally we obtain the following equations
aul
( A= 9%
T %’
1
ZA =T v,
(1.22) ; k
.Q__ 771 = ]?;71
Ds2 3’
D a—1 a n
\~7'=—k7"+k7* (a=3,4,..,n, k=0).
DS a a—1 a+l

These are the Frenet formulae in concircular geometry.?
§2. Geodesic circles on hypersurfaces.
Let

2.1) w=ut (ul, u ..., u)
be the equations of a hypersurface V,.; in our Riemannian space, u’

(%, 7, k, ...=i, 2 ... h—i) being parameters for V,_;. Then the funda-
mental tensor g; and the Christoffel symbols {7} of V,_; are respec-
tively given by

(2.2) gjk - B;nB;cv gﬂy
and
(2.3) {3} =Bi (BB {4} + B4
where
!
@4  Br=2%,  Bi=gnBy and Bj=25i.
ow’ u

The Euler-Schouten curvature tensor of V,-; in V. being defined
by

(25) Hji'=Bu+ByBy (4} - B (i},
it is easily seen that the tensor defined by

(2.6) M =Hz — n_—l-l_H %A s
where
@7 WA=g"Hz!,

is concircularly invariant.

1) The method of obtaining these conformal formulae was already indicated in
K. Yano, Sur la connexion de Weyl-Hlavaty et ses applications 4 la géométrie con-
forme, Proc. Physico-Math. Soc. Japan 22 (1940), 595-621.
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Denoting by B? the unit vector normal to the hypersurface V,-s,
we can put
(2.8) H;*=H;B* and M;j*=M;B*,

Hj;* and M being orthogonal to the hypersurface, if we regard them
as vectors in V,, with respect to the index 1. Then the equations of
Weingarten may be written as

(2.9) B!;=—B}HY;,
where
(2.10) Hi=g¢"H,;,

and the semi-colon denotes the covariant derivative.

We shall now consider a curve ui(s) on this hypersurface. This is
also regarded as defining a curve #(s) in V,. Then differentiating
u*(s) along the curve we have

A '

2.11) ou” _ gadw

08 0s

Pul o o our
2.12 OU _BA%Y | F ,
( ) 0s? os? + 5s os

S o Pl ouk ow ouk sut
2.13 OU _BAOY | gH O O g, .
(2.13) o3 o83 * o o3 "os os os

From these equations, we obtain
Mut | out . Aut S af %t out . P Puk
=B )
0 e =B (G 0 832)

U SuF | s oW SuF Sut
+3H;* ~——+Hj} e
o2 o5 M s as os

i k h l
+B; ILthlau ow ou* out ou

s 0s d0s os
Substituting, in these equations, the following relations

HJk = gk‘+ 1 -1 H?, kg]k ’
H};f; r= <1‘ljkBl + ’*l 1 H?aB‘gjk) .

(Mk h+ Haa hgak>B “<Mk+~——H ggk)B ‘H,

=<1ij;h+ nil H'-'a;h!]jk)B'I

— By (M,-k-l- nll Hf'.,g,-k> (M?'h+ -

]_ R
H?a*),
_1 50h

where ) B
MYy=9"My,,
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we find
S ot Swr Fw L owt | u Suk
@1) et s I Tag o B (533 t o Y se asz)
Pl St oW ouF oub
3M A ow _ pa i ow -
M’ e o B [M"M 8 s ds

% j k
+———H“<M“ ou _ ou M, o’ j@_)
n—1 o8 0s 08 0s

3 J k h l
__ou M:thlBu ou* ou au:l

os ' 0s 08 0s 0s

j k )3 h
+BM,, S a1 pige  SuT
os 05 08  m— 1

Suppose now that any geodesic circles of the hypersurface V,
can also be regarded as a geodesic circle of the enveloping space V,,
then wo have

j k h
@215) sy oW out_ B;A[M.,,th oW out out

os®  Js ds Jds s
Ha (M'1, ,__.,i_ auzM Bu’ 8’“,")
n— os o8 Os
oW Su* sut ou
M M,
WM Ss 8s s o3

k h
+B11M:ik;h 3%’ % ou
08 0s Os
k
+—1 B, , % g
n—1 os

for any % and % arbitrary except the condition

P ouk _
o> 0s

From the equation (2.15) we have
M;;‘l = algjk ’

Oik—5

from which we conclude
(2.16) M;; =0
because of the identity ¢"*M;,*=0.
Substituting (2.16) in (2.15), we have
(2.17) H%.,=0.

Thus we have the
Theorem. If any geodesic circle of a hypersurface V,_; can be
regarded as a geodesic circle of the enveloping space V., then the hyper-
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surface is totally umbilical and the mean curvature is constant on the
hypersurface.

Remark. The property that the mean curvature of a totally um-
bilical hypersurface is constant is not a conformal one, but is a con-
circular one.

For, under a concircular transformation (1.2), the Euler-Schouten
tensor Hj;* being transformed by

I-I;;‘l = H.;;cl - gjkPaBaBl ’
we have
(2.18) pH®%=H%—(n—1)p,B*.

Differentiating this equation covariantly, we have

(219)  pp;H%+ pHY ;= H% . ;— (n—1) p,. y)B*Bf + (n—1) p, B H;

where

P;i=p B'.4=M

e ow
Substituting

Pa; = $9apt Palp
and (2.18) in (2.19), we find
pﬁ?a:.i:H?a:j'l’(n_l)Pi 1.1

or

_ 1 .
2.20 P fge .= He .+4p,M;.
( ) m—1 Ei— ;iteM;

The equations (2.20) show that the property that the mean curvature
of a totally umbilical hypersurface is constant is a concircular one.



