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Introduction. L.V. Kantrovitch introduced the notion of regularityD

in vector lattice and applied it to the space of measurable functions.
In 1 of this paper, we prove that the regularity axiom is decomposed
into two simple propositions. In the succeeding articles we prove many
theorems n Kantrovitch’s paper under weaker assumption.

1. Let be a complete vector lattice. Then the regularity
axiom due to Kantrovitch reads as follows"

If E for n=l, 2, and sup E tends to a limit y, then for
each n there exists a finite subset E’ of E such that lim E’=y.

For regular vector lattice , two theorems hold as Kantrovitch
shows.

I. If y(-y (0) (as k- o) and y --> y (o) (as i--) o) in f, then
there exists an increasing sequence of iadices k,k, such that
yki) -- y (o) (i --) c ))

lI. For any set E , there exists an enumerable subset E’ of
E such that sup E’= sup E)

Conversely, we can prove the following theorem.
Theorem 1.1. I and II imply the regularity axiom.
Proof. By II, for each E there exists an enumerable set E

{Yn, k} k=l,2,..., such that supE=sup(yn,7)k=l,2 If we put y)=
sup(y., ,y.), then y) supE (n-) ). Therefore, if limsupE,=yo,

then by I we can find an increasing sequence of indices {k,,} such that
lim y()=yo. Hence lim sup (y, y..)=lim sup E.

From the proof it is easy to see that in II we can replace the
condition y,)-- y (o) (as k- ) by y) y,, (o) (/- ).

In the space of measurable functions (S), (o)-convergence is equi-
valent to almost everywhere convergence). Therefore, I is nothing but
Fr6chet’s theorem).

We can easily verify that the space (S) satisfies II. But more
gencrally we can prove

Theorem 1.2. II holds in the space of functions with metric func-
tion p such that 1. for any y 0, fl(y) is defined and 0 and ,(?/)=0

1) L.V. Kantrovitch: Lineare halbgeordnete Riume, Recueil Math., 44 (1937),
pp. 121-165.

2) loc. cir., Satz 24.
3) loc. tit., Satz 23, a).
4) G. Birkhoff, Lattice theory, Chapter VII.
5) M. Frchet, Rendiconti di Palermo, 22 (1906), p. 15.
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is equivalent to y 0, 2. y Y2 implies p(y) <2 P(Y2), 3. Y-Y (moto-
tonously) implies p(y)- (y).

Proof. Let E be an upper bounded set, that is, there exists
y* e such as y y* for any y e E. We can assume that E contains
zero-element.

If we put "=sup (0, y, ..., y} (y e E), then y*. Therefore
() (y*) by 2, hence {()} is bounded. That is, there exists a
number 0 such that ]() o. If we put 0=l. u.b. (), then there
exists {} such that lim ()=. We may assume 2 .... Let

lim =y’, then ()-, (y’) by 3. Thus we have (y’)=o.
We will now prove that y’= sup E. y e E implies lira sup (, y)=

sup (y’, y). Since p(sup (y, y)) po, we have p(sup (y’, y)) flo. Ob-

viously, sup (y’, y) y’. Therefore p(sup (y’, y)) p(y’)= fl0. Th
sup (y’, y)=y’, namely y y’. Thus we have y’=sup E. (Q. E. D.)

Evidently conditions 1, 2, 3 for p are satisfi in (S), L (p 1),
(s) and (p !).

2. t S a a-complete vector lattice for which I holds.
Lemma .1. a.complete vector lattice is archimedian, that ,

f> 0 and 0 imply 2f 0.
For the proof, see Birkhoff, Lattice theory, p. 106, Theorem 7.3.
Lemma .. The sequence {f} (o)-converges to f if and only if

f.-f w., for some w. $ 0.
For the proof, see Birkhoff, loc. cit., p. 112, Lemma 2.
Theorem 2.1. If y--)0 (o), then there exists a sequence of real

numrs {} such that 2-- and i,y0 (o).
Proof. If we put .=sup (] y, [, y+ , ...), then $ 0. Further

put ) k (k 1, 2, ...), then lim) 0 (k 1, 2,...). By I, there
exists an increasing sequence (n) of integers such that lim "’()=0.

k"nk
Therefore lim ky O.

Let up put 2=k if nnn+. Evidently + and
lim lirak 0. Hence lim 2y, 0.

Theorem 22. In (o)-convergence is equivalent to relative uniform
convergence.

Proof. Obviously, relative uniform convergence implies (o)-con-
vergence. Conversely, if y y (o), then by theorem 2.1 2 y-y 0
for some 2 + . From Lemma 2.2, there exists {w} such that,, ]yn-y <w, (w, $ 0). Putting 1/2,,=, we have y-y <w( $ 0).
Therefore. {y} converges relative miformly to y.

Theorem 2.3. If lim y)=y (i 1, 2, ...), then for any 0 there

exists Yo e such that y)-y yo for k K(e, 1).
Proof. For each i, there exists y) such that Y-Y.I < ey0-(i) for

k K(e, i). By Lemma 2.1 lim-[y)=0 (i=1,2, ...) and by I lim---y)

=0 for some (n} (n,<nz< "-). Therefore ,n]-:;Y) w (w $0). If
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Theorem 3.1. If , is a -eomplete vector lattice for which I holds,
then closure operation defined by (o)-topology satisfies Kuratowski’
axiom

1. if E is one point or vacuous, ’--E,

3. E=E.
Proof is evident. Thus we can introduce topological convergence.
Concerning the relation of topological convergence and (*)-con-

vergence, we have
Theorem S.. That {y} is topologically convergent to y (y --y(0)

s equivalent to that y is (*}.convergent to y.
We can prove following series-theorems in our space.

Theorem 3.S. a) In order that y converges, it is necessary and

sufficient that lira (S-S) lira , y 0, where S=y.

b) If [2q]y{ is convergent, then .. y is also.

c) If SI <= y0 and 2 0, then ] 2y is convergent.

d) Whatever be y, there exists real numbers 22>0 such that

]2lYI is convergent.- e) If ]y is convergent, then ] IYI is convergent for some
i-1

real number 2-- o.
f) If y--*0, then tlere exists real numbers ;> 0 such that

2 is divergent but ] 2y is convergent.
4. We have proved in 1 that | holds in space (S). But more

generally we get
Theorem ].1. I holds for the vector lattice with the metric func-

tion p such that 1, 3 in Theorem 1.2 and 2
p(y), 4. y + co not implies lim lim (y+v-y)=0.

For the proof we need a lemma.
Lemma .1. y-- 0 is equivalent to lim p(sup

Proof. Necessity. y--, 0 implies Y - 0, therefore lim (sup (! Y I,

Y+ I, ...)) =0. sup (I Yn I, Yn+l 1, "") iS monotone decreasing with n,

hence by 3 lim tv(sup (I Y I, Y.+ , ...))=0. Hence, for n Y (sup
( YN , YN+I }, "")) < e. Therefore, for n, m> N, #(sup (] y , Y+ l, ...,

Seiee. or any e 0 there is an N such that , N
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Thus for N (sup (1, 1,

Since sup (I Y !,

But (sup (I Y I,
Hence lim Y

implies p(sup (1Y I, Y.+ I, Y !)) <: .
y,+ ], ...) is monotone deeasing, there exists a limit.

[y,+, ], ...)) 0 implies 1 (sup (] y, ], [y,+, [, ...)) =0.
0. Thus lira y, 0.
Proof of theorem. We will distinguish four cases.
1) y) y, (k ) and y, $ 0 (n ) imply that there exists

a sequence of elements {y-)} tending to 0. In fact, y, $ 0 implies
p(y,) $ 0, hence, we can find real , 0 such that p(y) < ,. p( y)

(y) < implies ( y’)) < for me index k. We have ([
]Y)]) P(I Y) Y) (] Y’) w y)= p( y’)) < , and
(m) (k ). Hence, there exists k such that p([ y’) y), ( y)) < e. Thus proceeding we can find (k,} such that

p(sup ( y-[, ..., y2 )) < e (n= 1, 2, p= 1, 2, ...). Lemma 4.1

gives lim y,=O, which is the required.

2) Let us suppose that y)y, (k ) an y, $ 0. By Lemma
2.1, there exists {w)} such that y)-y, w)(w) 0 (k--) )).
We have [y) y+w(), and y,+w,[) y (k-> ), y, $ 0. By the
case 1), there exists {k,} such as y+w,)--) O. Thus y-) 0,
y-) -> 0.

3) Let y)y (k) and y,0. If we put =sup
(y,, y,+, ...), then $ 0. Putting )=sup(, y)), we have
) , (k--> ). Therefore, by the c 2) -)] --0 (n )
and then )-->0. Thus we have y) 0.

4) general case is easily reduced to the case 3).
For the concrete case metric function p may be taken as follows.

y(t)] dt if (S)
+

% 1 V() where y=((,(),...) if =(s),

p(y)=()’, where y=((’,),...) if g=l" (pl).

In the case of (S), we have from theorem 2.2
Theorem $.3. (Egoroff) In the space (S), if (t)-- e(t) almost

everywhere, then there exists a function 0e(S) such that

e(t)/eo(t))-->0 almost everywhere uniformly.

From Theorem 3.3, e) and f), we have Steinhaus’ theorem.

Theorem $.. In the space (S), a) if ,. is almost everywhere
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convergent, then there exists a sequence of real numbers ,- o such
that ]2 onverges almost everywhere.

b) if ,-,0 a.e., then there exists real numbers ,., :> 0 such that
] is divergent but :E .. is a.e. convergent.

When I have written up this paper, Nakano’s paper appeared in Shij-stgaku
Danwalwai, 241, where he proved that regularity axiom is equivalent to II and regular
completeness. is called regularly complete when Yi, ji---> 0 (o) (as i--> c) implies the
existence of y0such as YoYi’Ji (i=1,2 ). This is equivalent to I.


