No. 9.] 525

PAPERS COMMUNICATED
102. On the Regular Vector Lattice.

By Masae ORIHARA.
Mathematical Institute, Tohoku Imperial University, Sendai.
(Comm. by M. FUJIWARA, M.LA,, Nov. 12, 1942.)

Introduction. L.V. Kantrovitch introduced the notion of regularity?
in vector lattice and applied it to the space of measurable functions.
In §1 of this paper, we prove that the regularity axiom is decomposed
into two simple propositions. In the succeeding articles we prove many
theorems in Kantroviteh’s paper under weaker assumption.

§1. Let & be a complete vector lattice. Then the regularity
axiom due to Kantrovitch reads as follows:

If £,<Q for n=1,2,... and sup E, tends to a limit y, then for
each n there exists a finite subset E, of E, such that lim E,=y.

n->

For regular vector lattice ¥, two theorems hold as Kantrovitch
shows.

L If 4 —>y;(0) (as k— ) and y;—y (0) (as i— =) in &, then
there exists an increasing sequence of indices Ky, ks ... such that
Y —y(0) ((— )?

II. For any set E < &, there exists an enumerable subset £’ of
E such that sup E'=sup E®

Conversely, we can prove the following theorem.

Theorem 1.1. I and II imply the regularity axiom.

Proof. By II, for each E, there exists an enumerable set E;,=
{Ynr} E=1,2,..., such that sup E,=sup (Y1) k=1,2, ... If we put yiP’>=
SUp (Yn,1,..» Yn. 1), then ¥y 1 sup E, (n—> ). Therefore, if lim SEBE,FQ/O,

then by I we can find an increasing sequence of indices {k.} such that
lim g =y,. Hence lim sup (Yn,1,.., ¥n,x,) =lim sup E,.
n

N>

From the proof it is easy to see that in Il we can replace the
condition ¥ —y; (0) (as k— ) by ¥ T 4. (0) (k — o).

In the space of measurable functions (S), (o)-convergence is equi-
valent to almost everywhere convergence”. Therefore, I is nothing but
Fréchet’s theorem®.

We can easily verify that the space (S) satisfies II. But more
gencrally we can prove

Theorem 1.2. 1II holds in the space of functions with metric func-
tion p such that 1°. for any y =0, p(y) is defined and =0 and p(y)=0

1) L.V. Kantrovitch: Lineare halbgeordnete Raume, Recueil Math., 44 (1937),
pp. 121-165.

2) loe. cit., Satz 24.

3) loe. cit., Satz 23, a).

4) G. Birkhoft, Lattice theory, Chapter VII.

5) M. Fréchet, Rendiconti di Palermo, 22 (1906), p. 15.
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is equivalent to ¥=0, 2°. y; <y, implies p(yy) < p(v2), 3°. ¥, —y (moto-
tonously) implies o(y.) — p(y).

Proof. Let E<<{ be an upper bounded set, that is, there exists
y*e® such as ¥y < y* for any ye E. We can assume that E contains
zero-element.

If we put ‘7=sup(0,yy, ---, ¥s) (y: € E), then ¥ <y*. Therefore
(@) Z p(y*) by 2° hence {o(y)} is bounded. That is, there exists a
number p, such that | p(@) | <p,. If we put pp=1u.b.p(%), then there
exists {¥.} such that lim p(ya)=p,. We may assume NS <. Let

limy,=v/, then p(y,) — (%) by 3°. Thus we have p(y')=p.
We will now prove that ¥ =supE. yeFE implies lim sup (¥», ¥)=
n>o

sup (v, ). Since p(sup (@5, ) < e we have p(sup ¥, %)) <p Ob-

viously, sup (¥,y)=¥. Therefore p(sup (v, y)) = p(y)=p. Thus
sup (v, ¥)=v', namely ¥y <y. Thus we have ¥=supE. (Q.E.D.)

Evidently conditions 1°, 2°, 8° for p are satisfied in (S), L? (p = 1),
(s) and 2 (p=1).

§2. Let & be a os-complete vector lattice for which I holds.

Lemma 2.1. o-complete vector lattice is archimedian, that is,
S>>0 and ,) 0 imply 1,.f] 0.

For the proof, see Birkhoff, Lattice theory, p. 106, Theorem 7.3.

Lemma 2.2. The sequence {f.} (0)-converges to f if and only if
| fo—F| < wn, for some w, | 0.

For the proof, see Birkhoff, loc. cit.,, p. 112, Lemma 2,

Theorem 2.1. If y.— 0(0), then there exists a sequence of real
numbers {1,} such that i,— o and 1,¥.— 0 (0).

Proof. If we put %,=sup (| ¥al, | ¥ns1l, ---), then %, ] 0. Further
put ¥P=ky, (k=1,2,...), then lim#P=0 (k=1,2,...). By I, there
exists an increasing sequence (n;) of integers such that nglc y;';)=o.
Therefore }‘i_glqkynk=0.

Let up put A,=k if m <n<mng. Evidently 2,7+ and

lim 2,%,=lim kg?nk =0, Hence lim 2,5,=0.
n-»o Ie>oo

Theorem 2.2. In £ (0)-convergence is equivalent to relative uniform
convergence.

Proof. Obviously, relative uniform convergence implies (0)-con-
vergence. Conversely, if ¥,— ¥ (0), then by theorem 2.1 4, |¥.—y|—0
for some 1,7 + . From Lemma 2.2, there exists {w.} such that
A Yn— | <Wny (W} 0). Putting 1/1,=e¢,, we have |y,—y|<<ewi(e, | 0).
Therefore {y,} converges relative vniformly to y.

Theorem 2.3. If 1101:2 Y=y, (1=1,2,...), then for any ¢ >0 there

exists ¥ € € such that |y —y; | ey for k= Kie, 1). .
Proof. For each i, there exists y§ such that |y¥—y.| eyl for
k> K(e,i). By Lemma 2.1 lim —l—yfﬁ’=0 (¢t=1,2,...) and by I lim »-—1»~y5"’

n o N, >0 M,

=0 for some {n;} (n;<<m;<<---). Therefore -;%i’
i

T

<w; (w; | 0). If
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we put w, < wy=1p, then for each -}—yé")
§ 3.

Theorem 38.1. If 8 is a s-complete vector lattice for which I holds,
then closure operation defined by (o)-topology satisfies Kuratowski’s
axiom ;

1. if E is one point or vacuous, E=E,

2. E1 () Eg"—-“El \) Ez,

3. E=E.

Proof is evident. Thus we can introduce topological convergence.

Concerning the relation of topological convergence and (*)-con-
vergence, we have

Theorem 3.2. That {y.} is topologically convergent to v (yn -—>y(t))
is equivalent to that u, is (*)-convergent to .
We can prove following series-theorems in our space.

Theorem 3.3. a) In order that Ey converges, it is necessary and

< %.

sufficient that lim (S,.—S,)= lim Z y;=0, where S, Z}yz

m, n->oo m, n->0 ¢=n+l

b) If 3)|y;| is convergent, then > y; is also.

e) If |S:;|<w and 2,}0, then S_}lliy,- is convergent.

d) Whatever be y;, there exists real numbers 2;>>0 such that
Zl |y:| is convergent.

e) If Sy; is convergent, then EA |y;] is convergent for some
real number A;— co.

f) If y;—0, then there exists real numbers A;>0 such that
>14; is divergent but > A;y; is convergent.

§4. We have proved in §1 that I holds in space (S). But more
generally we get

Theorem 4.1. 1 holds for the vector lattice with the metric func-
tion ¢ such that 1°, 3° in Theorem 1.2 and 2° y; <y, implies p(yn) <
o(y2), 4°. Y, 1 + o not implies le lsz Yn+p—Yn)=0.

For the proof we need a lemma.

Lemma 4.1. y,— 0 is equivalent to lim p(sup (Unly | Ynsrly -] ’.t/mf))
=0.

Proof. Necessity. v,— 0 implies |y, |— 0, therefore lim (sup (¥,
| Ye1 s )) =0. sup(¥nl, | Yns1l,--) is monotone decreasing with =,

hence by 8° lim p(sup (¥ ls | Ynsrls ~--))=0- Hence, for n= N .p(sup

|yl |9nsal, ) <e. Therefore, for n,m>N, p(sup (| ¥nl, |%nsl, o)

L)) <e.
Sufficiency. For any e=>0 there is an N such that n,m=N
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implies p(sup (|%nls | Yns1 s+ |9 ) <e. Thus for n=N p(sup(ly.|,
| Ynerls---)) =}Ligl°p(sup (%uls [ Ynsaly ooor 19m])) <e  Since sup (|yal,
| Yn+1], ---) is monotone decreasing, there exists a limit. But p(sup (| Y|,

|Ynsal, --)) =0 implies lim (sup(19n s | Ynsal,--)) =0. Hence lim |y, |
=0, Thus limy,=0.

Proof of theorem. We will distinguish four cases.

1) yP |y, (k— =) and ¥,| 0 (n— ) imply that there exists
a sequence of elements {y¥~} tending to 0. In fact, ¥.| 0 implies
p(y,) | 0, hence, we can find real ¢, — 0 such that p(y,) <e.. p(ly® 1)
— p(yy) < & implies p(| y§*P ) <& for some index k. We have p(| y§* |
Uy ) = (| 98 | O ) < p(| 9 | U ) =p(l 9 ) <&, and p(| P |)
— p(ys) < e (k— ). Hence, there exists k, such that p(| ¥’ | o |y |)
<e, p(ly§?|)<<e. Thus proceeding we can find {k.} such that

p(sup (|9nl, oo, |9%2' ) <ew (0=1,2,...; p=1,2,...). Lemma 4.

gives 11m y&E’ =0, which is the required.

2) Let us suppose that ¥y —y, (k— «) and. ¥, | 0. By Lemma
2.1, there exists {w{®} such that |[¥P—v.|< ""( @10 (k— 00))
We have |y®| <y, +wP, and y.+wiP |y, (k— ), y,]0. By the

case 1), there exists {k,} such as y,+w{”—0. Thus |y¥’|—0,
o =0,

3) Let ¥®—>y, (k—>) and y.,—0. If we put y=sup
(Yns Yn+1, +--), then %, ] 0. Putting %P=sup(@.\|y’|), we have
|y®|—7%, (k— o). Therefore, by the case 2) |y&’|—>0 (n— =)
and then ¥%¥»’—0. Thus we have y{=» — 0.

4) general case is easily reduced to the case 3).

For the concrete case metric function p may be taken as follows.

y@® | e o
ply)= SF 4 (t)ldt if L=(9)

P(y)=SEl y@t)|7dt if L=LP(p=>1),

(%)
Aly) =2 > ;1 —1—|:5l-—(l;)—l where =0, 7?,...) if 8=(s),

p(y)=2_1177“’|”, where y=(7V, 7%, ...) if &= (p=1).

In the case of (S), we have from theorem 2.2

Theorem 4.3. (Egoroff) In the space (S), if ¢,(t) — ¢(t) almost
everywhere, then there exists a function ¢,e(S) such that (¢,,,(t)~
st?(t)/sog(t)) — 0 almost everywhere uniformly.

From Theorem 8.3, €) and f), we have Steinhaus’ theorem.

Theorem 4.4. In the space (S), a) if }igﬁn is almost everywhere
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convergent, then there exists a sequence of real numbers 2,— <« such
that > 1,0, converges almost everywhere.

b) if ¢,—0 a.e., then there exists real numbers 2,,>>0 such that
>4, is divergent but > A.p, is a.e. convergent.

When I have written up this paper, Nakano’s paper appeared in Shijé-siigaku
Danwakwai, 241, where he proved that regularity axiom is equivalent to II and regular
completeness. 8 is called regularly complete when y;,j,—>0(0) (as 7—> o) implies the
existence of ¥, such as y,=> s, i; ©=1,2,..). This is equivalent to L



