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21. Notes on Banach Space (V): Compactness
of Function Spaces.

By Shin-ichi IzuMI.
Mathematical Institute, Tohoku Imperial University, Sendai.
(Comm. by M. FUJIWARA, M.LA.,, March 12, 1943.)

1. We have proved? already

Theorem 1. A set ¥ in (C) (=family of continuous functions in
(0,1)) is compact when and only when

1°. & is uniformly bounded,

8
2°, lain.} %j f@+t)dt=f(x) uniformly for all z in (0,1) and for all
>0 84,
fin @,
Theorem 2. A set ¥ in (M) (=family of essentially bounded
measurable functions in (0,1)) is compact when and only when 1° and

3
3. ling ‘{X fx+1t)dt=f(x) uniformly almost everywhere for all x
>0 0 Jy

in (0,1) and for all f in F.

On the other hand Phillips® proved a compactness theorem in
Banach space, whence he derived the Kolmogoroff-Tulajkoff theorem
concerning compactness in (L”) (p=1). The latter theorem reads as
follows

Theorem 3. A set & in (L?) (p=1) (=family of measurable
functions whose p-th power is integrable in (0,1)) is compact when
and only when

1
£, for fin ¥ jo| f@) |7 dt is uniformly bounded,
5°, 1113 }jo f@+t)dt=f(x) uniformly in the L”-mean.
0 g Jg

Concerning space (S) we proved in $3
Theorem 4. A set % in (S) (=family of measurable functions in
(0, 1)) is compact when and only when
g
6°. asy‘}]im }j (f(:c+t))"dt= f(x) uniformly for f in ¥, where
@.N) 0 Jy

asg -p;im is the Moore-Smith limit in measure and
@, N)

(r@)"=f@) if |f®OI<N and =0, otherwise.

Summing up above results we get

Theorem 5. A set & in E where E is (C), (M), (L?) (p=1) or
(S), is compact when and only when

7°. & is bounded concerning metric in E,

1) S. Izumi, Proc. 15 (1938).
2) R. Phillips, Trans. Am. Math, Sor., vol. 44 (1940).
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8% lim {50 ( f(:c+t))th=f (x) uniformly in ¥, where lim is the
@M G Jy @.N)

Moore-Smith limit concerning the metric in E.

In §2 we prove a key theorem from which all above theorems
are derived.

2. Let X be an (F)-space. We suppose that there are sets of
operations U; x(f)=U,(f™) (6>0, N>0) from X into X such that

a) for fixed 6 and N Uj; n is completely continuous,

b) for a fixed N U; is a linear operation and | U;| is uniformly
bounded, that is there is an M such as [ U; | < M,

¢) for each f in X lim U; n(f)=f, limit being taken concerning
(F)-metrie.

Then we have

Theorem 6. A set S in X is compact when and only when

1) Lub. (f]; feS) <<,

2) lim| U; n(f)—f1=0 uniformly in S,
where | | denotes metric in X, such that |[f¥—g"V|<|f—g].

Proof. Necessity. Let S be a compact set. Since S is totally
bounded, for any ¢>0 there are fi,f3 --,f» in S such that for any
feS there is a k such that |f—fi | <<e.

By ¢) we can find (6, N,) such that for all 6 <45, and N= N,

VU N —fe ] <e k=1,2,...,m).
Therefore for any xS and (3, N) = (6., N,)
| Us, n(F) =1 STUN =) |+ Us, p(fe) =S |4+ | fii— ] L e+ M)

by b). Thus we get 2). 1’) is evident.
Sufficiency. By 2’), for any e¢>0 there exists (., N.) such that

| Us n()-Fi<e  (feS).

By 1) S is bounded, and then by a) (Uj; n(f); feS) is compact. Hence
there are fi,f ---,f» in S such that for any f in S there exists k
such as

U o.n(f)—Us, N"(f W | <e.

Hence
|f=fl 21— Us,.n () i+ Ua,,(fN" =fiVe) |+| Us, Nc(fk)_fk‘ <3e.

That is, S is totally bounded, and then is compact.
3. We can now prove Theorem 4 by Theorem 6.
In S the metric is defined by

(" lfol
'f"SoHIf(t)ldt'

Convergence by such metric coincides with asymptotic convergence.
Condition a) is easily verified in such space. Condition b) is given by
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1(° N
! ]ﬂo (F+0)"da]

°1+ } %S: (f(:c+t))Nda:| @

%j: (fe+) dt= | = S

_ U (e+)"| ol O]
< 5 N GtSC)

°1+~;—L](f(x+t)) |de °1+] (F@®)"|

=ClfM < CIfl.

C being an absolute constant. Finally condition ¢) is also evident.
Thus Theorem 6 gives Theorem 4.



