No. 3.]

PAPERS COMMUNICATED

21. Notes on Banach Space (V): Compactness of Function Spaces.

By Shin-ichi IZUMI.

Mathematical Institute, Tohoku Imperial University, Sendai. (Comm. by M. FUJIWARA, M.I.A., March 12, 1943.)

1. We have proved¹⁾ already

Theorem 1. A set \mathfrak{F} in (C) (=family of continuous functions in (0,1)) is compact when and only when

1°. To is uniformly bounded,

2°. $\lim_{\delta \to 0} \frac{1}{\delta} \int_0^{\delta} f(x+t)dt = f(x)$ uniformly for all x in (0,1) and for all f in \mathcal{F} ,

Theorem 2. A set \mathfrak{F} in (M) (=family of essentially bounded measurable functions in (0,1)) is compact when and only when 1° and

3°. $\lim_{\delta \to 0} \frac{1}{\delta} \int_0^{\delta} f(x+t)dt = f(x)$ uniformly almost everywhere for all x in (0,1) and for all f in F.

On the other hand Phillips²⁾ proved a compactness theorem in Banach space, whence he derived the Kolmogoroff-Tulajkoff theorem concerning compactness in (L^n) $(p \ge 1)$. The latter theorem reads as follows

Theorem 3. A set \mathfrak{F} in (L^p) $(p \ge 1)$ (=family of measurable functions whose p-th power is integrable in (0,1)) is compact when and only when

4°. for f in \mathfrak{F} $\int_0^1 |f(t)|^p dt$ is uniformly bounded,

5°. $\lim_{\delta \to 0} \frac{1}{\delta} \int_0^{\delta} f(x+t)dt = f(x)$ uniformly in the L^p -mean.

Concerning space (S) we proved in § 3

Theorem 4. A set \mathfrak{F} in (S) (=family of measurable functions in (0, 1)) is compact when and only when

6°. $\underset{(\delta,N)}{\operatorname{asy}} \cdot \lim_{\delta} \frac{1}{\delta} \int_{0}^{\delta} \left(f(x+t) \right)^{N} dt = f(x)$ uniformly for f in \mathfrak{F} , where $\underset{(\delta,N)}{\operatorname{asy}} \cdot \lim_{\delta \to \infty}$ is the Moore-Smith limit in measure and

$$(f(t))^N = f(t)$$
 if $|f(t)| \le N$ and $= 0$, otherwise.

Summing up above results we get

Theorem 5. A set \mathfrak{F} in E where E is (C), (M), (L^p) $(p \ge 1)$ or (S), is compact when and only when

7°. \mathfrak{F} is bounded concerning metric in E,

¹⁾ S. Izumi, Proc. 15 (1938).

²⁾ R. Phillips, Trans. Am. Math. Sor., vol. 44 (1940).

8°. $\lim_{(i,N)} \frac{1}{\partial} \int_0^{\delta} (f(x+t))^N dt = f(x)$ uniformly in \mathfrak{F} , where $\lim_{(i,N)}$ is the Moore-Smith limit concerning the metric in E.

In § 2 we prove a key theorem from which all above theorems are derived.

- **2.** Let X be an (F)-space. We suppose that there are sets of operations $U_{\delta,N}(f) = U_{\delta}(f^N)$ ($\delta > 0$, N > 0) from X into X such that
 - a) for fixed δ and N $U_{\delta,N}$ is completely continuous,
- b) for a fixed N U_{δ} is a linear operation and $\|U_{\delta}\|$ is uniformly bounded, that is there is an M such as $\|U_{\delta}\| \leq M$,
- c) for each f in X $\lim U_{\delta,N}(f)=f$, limit being taken concerning (F)-metric.

Then we have

Theorem 6. A set S in X is compact when and only when

- 1') l. u. b. $(|f|; f \in S) < \infty$,
- 2') $\lim |U_{\delta,N}(f)-f|=0$ uniformly in S,

where | | denotes metric in X, such that $|f^N - g^N| \le |f - g|$.

Proof. Necessity. Let S be a compact set. Since S is totally bounded, for any e > 0 there are $f_1, f_2, ..., f_n$ in S such that for any $f \in S$ there is a k such that $|f - f_k| < e$.

By c) we can find (∂_c, N_e) such that for all $\partial \leq \delta_e$ and $N \geq N_e$

$$|U_{\hat{a},N}(f_k)-f_k| < e$$
 $(k=1,2,...,n)$.

Therefore for any $x \in S$ and $(\partial, N) \geq (\partial_e, N_e)$

$$|U_{\delta,N}(f)-f| \leq |U_{\delta}(f^N-f_k^N)| + |U_{\delta,N}(f_k)-f_k| + |f_k-f| \leq e(2+M)$$

by b). Thus we get 2'). 1') is evident.

Sufficiency. By 2'), for any e > 0 there exists (δ_e, N_e) such that

$$|U_{\delta_{c},N_{c}}(f)-f| < e \quad (f \in S).$$

By 1') S is bounded, and then by a) $(U_{\delta,N}(f); f \in S)$ is compact. Hence there are $f_1, f_2, ..., f_n$ in S such that for any f in S there exists k such as

$$U_{\delta_{\sigma},N_{\sigma}}(f)-U_{\delta_{\sigma},N_{\sigma}}(f_k)| < e$$
.

Hence

$$|f - f_k| \leq |f - U_{\delta_c, N_c}(f)| + |U_{\delta_c}(f^{N_c} - f_k^{N_c})| + |U_{\delta_c, N_c}(f_k) - f_k| \leq 3e.$$

That is, S is totally bounded, and then is compact.

3. We can now prove Theorem 4 by Theorem 6.

In S the metric is defined by

$$|f| \equiv \int_0^1 \frac{|f(t)|}{1+|f(t)|} dt.$$

Convergence by such metric coincides with asymptotic convergence. Condition a) is easily verified in such space. Condition b) is given by

$$\left| \frac{1}{\delta} \int_{0}^{\delta} \left(f(x+t) \right)^{N} dt = \left| = \int_{0}^{1} \frac{\left| \frac{1}{\delta} \int_{0}^{\delta} \left(f(x+t) \right)^{N} dx \right|}{1 + \left| \frac{1}{\delta} \int_{0}^{\delta} \left(f(x+t) \right)^{N} dx \right|} dt \right| \\
\leq \int_{0}^{1} \frac{\frac{1}{\delta} \int_{0}^{\delta} \left| \left(f(x+t) \right)^{N} dx \right|}{1 + \frac{1}{\delta} \int_{0}^{\delta} \left| \left(f(x+t) \right)^{N} dx \right|} dt \leq C \int_{0}^{1} \frac{\left| \left(f(t) \right)^{N} \right|}{1 + \left| \left(f(t) \right)^{N} \right|} dt \\
= C \left| f^{N} \right| \leq C \left| f \right|.$$

 ${\cal C}$ being an absolute constant. Finally condition c) is also evident. Thus Theorem 6 gives Theorem 4.