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Mathematical Institute, Tokyo Imperial University.
(Comm. by S. KAKEYA, M.LA., Dec. 12, 1945, )

§2. Canonical fundamental equations of flat conformal geometry.

In the preceding Chapter,” we have established the so-called fundamental
differential equations for the flat conformal geometry, and discussed the trans-
formation law of the coefficients of the fundamental equations under change of
factors and under coordinate transformations respectively. We have also studied
the integrability conditions of the fundamental differential equations.

In the present Chapter, we shall introduce a canonical form of the funda-
mental equations and discuss the transformation law of the coefficients of the
canonical fundamental equations under coordinate transformations, the factor
being fixed in this case. 'We shall, in the last Paragraph of the present Chapter,
also study the integrability conditions of the canonical fundamental differential
equations,

1. Canonical fundameniol equations.®

We have scen that, the fundamental equations established for a repére
[4,, Ay, A..] being

(21) %%':—=113.VAO+ DA+ M5 A,

J
s M4,

if we perform a change of factor
(2:3) *4o=¢p 4,
the repére [ 4y, 4s, A..] will be transformed into another repére [*4,, * 4,,* 4..]
following the formulae
*A0=¢A0 ’
(2.3) *An=¢(¢uA0+Ass) ’

i 3 (L phtrpaca);

1) K. Yano: On the flat conformal differential geometry I. Proc., 21 (1945) 419:
2) T. Y. Thomas: On conformal geometry. Proc. Nat. Acad. Sci. U.S.A., 12 (1926),
352-359.
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where
ad1
b= dog and ¢*=g",.

To obtain a canonical repdre, we impose the condition that the determinant
formed with the components of the fundamental tensor * 4, «* 4,=G,, is equal to
the unity, from which we have

|G| =g | =¢™g=1,
or
i
(24 ¢=g ™,
g denoting the determinant formed with g,,. Substituting the value (2.4) of ¢
into the equations (2.3), we find

[ -
*A0=y 2n AO’
1
-1 _(Jdlogg
*4,=g = “_d%q‘ A0+Av~)’
-1 -1
(2l5> < *A“-_—-g_s:T_ __:!:__.ql" dlogg o dl(xg 2n
2 & 43

1

' v dlogg "=
le e AV+A,,).

We shall call the repére [*A4,, *4,, ¥4,.] the canonical repére or the
repére naturel. Such repdres are characterized by the eondition
(2.6) |G| =1*4,-*4,}=1.
The canonical repére [*4,, *4,, *A.] being defined at every point of the
conformal space C,, we can establish, by a process analogous to that used in
Chapter 1, 1°, the canonical fundamental equations

*
daer = s
d*All Xpyo % KAk %k pyeo k
(2#7) dey = II].W A0+ Ilp.v A).+ ”]J.'V A@)
%
= A% A,

with regpect to the canonical repére [* 4,, * 4,, ¥ 4,1, where
*M3=0G,,, *IL,=G“*II,,,
* [T, being determined in Paragraph 3 of the present Chapter.
It will be notieed that the coefficients *IT}, = K,, that is, Christoffel symbols
formed with G,,, satisfy the conditions

(2.8)
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(2.9 *I, =K =0.
2. Transformation law of coefficients of the canonical fundamental
equations.
The factor being fixed for the canonical repére, we have only to consider the
coordinate transformations
(2.10) B =EN(E & e, B
Under this coordinate transformation, the repdre [4,, 4,, 4.] is transfor-

med into another repére [ 4,, 4,, A.] following the formulae

14—-0=A0) 14—l= :gi‘lAd., Jiov;:Aao’

a‘nd gp.vay"Av intO gl_w:ju'li-y fOllOWiI]g
_ o8 oFr
Guv AP s+ >

from which g= 4°¢, and consequently
1 1 1

g— Wmo—=y g_'“2;n ,
4 being the Jacobian of the coordinate transformation.
Substituting these equations into (2.5) written for the barred quantities, we

find
— 1
*A.=A—T*Ao ,
1
v -1(dlogd ", 43
XL, =g (_79;%__ %4, 4 o@*A*')’
(211)

1 1
i -1 =, dlogd "™ dlogd "™
*4 =4 n(V S_G™Y x e *A4,+
2 & o &
1 2

¢ dlog 4 ‘--%>£§—*A,+AT*A“) ’

o9&+ a8
which give the transformation law of the canonical repére [*4,, *4,, * 4] under
a coordinate transformation (2.10), where

G g 98 OF v g 98 98
Gp_v’—A dgp. d'éy Gﬁ-_- and G -—-A deﬂ d&T G .
Substituting the equation (2.11) into the canonical fundamental equations
JI* 4, -
oE s
d*‘iu KO SR A 4 RJFA KR A g kfFock 4
(2.12) dév - I[",u" An -+ Ill,,y ‘A)‘ + - [Ip;yq Am )
J* A, I
dg'w = *1I Z‘ov*Al ’

established for the canonieal repére [*4,, *A4, 5 *A;], and taking account of the
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canonical equations (2.7), we find

liro _ O OFT . (¥,
M= o Mt e ¥ m; )
—_— 1 — o — —
+ ‘P’u‘l’v - ‘2— GBT"’@‘I’TGW ’
- 08 [ 988 gET 0% )
XTIA — > > _xJye 2
= df“(d&“ o0 st ez
(213) + 80, + 8, — GGy
-2 98 9¢&"
*III'-V" de'p. d&v *IIM')
=X . d_ —
KT, = 47 ‘:é, 32: *11;,+c*»'~(d—‘g;* — I
+CH I~ O,
where
1
(2.14) Yo Qlogd "

J&

The formulae (2.13) give the transformation law of the coefficients of
canonic:d fundamental equations.

3. Integrability conditions of the canonical fundamental equations.

We shall now consider the integrability conditions of the canonical funda-
mental equations.

Applying the method analogous to that used in the third Paragraph of
Chapter 1, we obtain the
Theovem 2:  In order that *II},, *II}=K}y, *II3,=G,,(|G,]| =1) and
*IT%,=G™* 1T}, be coefficients of the canomical fundamental equations of flat
conformal geometry, it is necessary and sufficient that,
when n=23

(215) F Qo= M s = Moy =0

when n>3

(2'16> *lgp,lw = *R whw T ;%_—2— (*Rp.vsﬁ '-'*-Rp.wse t Gy.v*-Rz‘w —Gp.w*-R); V)

*R A ry
D m—2) (Cwde—Cud)=0,
*IT,, being necessarily given by
krro — nv ©wy
(217) w=" gt 2(n—1)(n—2) °
In this statement, the solidus denotes the formal covariant derivative with
respect to Kb, and
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A
*R}p.vu.:%elg%“ - 'é‘dIie':T‘?—"l'K:v-sz—K:m :v ’

and
*Row=%R\,,, *R=G"*R,,.
The fact that these conditions are invariant under coordinate transformations
may be verified as follows.
As is shown at the end of Chapter 1, the quantities 2%, Q.. and

*0% v, ¥Q%,. are related by the equations
1

T 2n
(2'18) * ?y.‘lw = ?'nlw - %‘?’# Q:LVW
and
(2'19) *-gi\y.'vw = g?p.‘ﬂm

respectively. The last equation shows that the quantities *22,,,, are components
of a tensor, which coincides with Weyl’s conformal curvature tensor. The equa-
tions (2.18) shows that *.£9,,,, are not in general components of a tensor. But
23, vanishing for n=3, this equation shows also that when n=3, *2%,., are
components of a tensor which coincides with conformal covariant of J.M.
Thomas.”

Thus the conditions in the Theorem 2 are all stated in the form invariant
under coordinate transformations.

§3. Theory of curves.

In the present Chapter, we shall study the theory of curves in the conformal
space C,. Ve shall establish first the Frenet formulae with respect to a projec-
tive parameter.

These formulae were already obtained by the present author. Here we
shall shiow that we can deduce, from the Frenet formulae with cespect to a pro-
Jjective parameter, the Frenet formulae which do not depend on the projective
parameter and coincide essentially with those obtained by the present author in
the study of linear connections of Weyl-Hlavat§ and of its application to the con-
formal geometry.

We state the results for the curve in the conformally flat space, but it is
evident that the results are valid also for the curves in the space with conformal
connection,

Y. The Frenet formulae with vespect to a projective parameter.

Let us consider a curve §*=£8*(¢) in the conformal space C,, and put

3.1) Swy=p4,

(1) ). M. Thomas: Conformal invariants. Proc. Nat. Acad. Sci. U.S.A., 12 (1926),
389-393.
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where p is a function of the parameter ¢ which will be determined later.
Differentiating (3.1) along the curve, we have

d g

from which
" d d ag+ de”
[ 5o ][ G Sol =05
The S, being a point-hypersphere on the curve,
d
(3.2) Sey= 43t S

is a hypersphere passing through the point S, and orthogonal to the curve. We
shall choose the factor p in such a manner that we have S+ Sa, =1, from which
we obtain

dt
(3.3) P=“d;' ’
where s is a parameter defined by the condition
as+ d&’
IG5 ds
Substituting (3.3) into (3.1) and (8.2), we heve respectively
(3.4) S@)=tAg
and
28
(3.5) S(:)—““'Ao‘l' ‘ciii 2

where a dot denotes the differentmtlon with respect to the parameter s.
Differentiating the relations S+ S8q,=0 and Sqy+Sg,=1 along the curve,
we find respectively

1+ S(o)

=0 and Sa; tSa)=0.

Hence
a
(3.6) 'S'cou>=“3t'" Sa)

is in general a hypersphere orthogonal to the hypersphere S, We shall choose
the parameter ¢ in such a way that the hypersphere S, reduces to a point-
hypersphere.

Substituting (3.5) into (8.6), we find

3.7 AS'@»)-—-%[(—:— - % +a )Ao-!-(a +t— de )A1+A ]

where

0 dE" dg’ e 2 d§* d&
= II,, 7 da_ds’+II“"dsds’
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Consequently, in order that S, be a point-hypersphere, we must have
(3.8) {t, s} = ; gua'a’ —da’,

where {t, s} denotes the Schwarzian derivative of ¢ with respect to s.

The equations (3.8) shows the projective character of the parameter ¢ thus
defined. \We shall call ¢ the projective parameter on the curve.

We thus attached, to every point Sy, of the curve, a unit hypersphere Sg,
passing through the point S, and orthogonal to the curve and a point-hyper-
sphere Sy, on S, satisfying

S+ Sey=—
which will be easily verified.
Differentiating the relations
S0 Ser=—1, S*Ses=0, Stey*Stey=0
along the curvo, we find

d d
S(w)=0 9 Ag(oo)"d“t—S(m)=0 .

See S(w)—O Sy i

Thus, if d S@,) is not identically zero, it is a hypersphere passing through
two points Sg, and S¢ and orthogonal to the hypersphere Sy, consequentlv we
can pub

d
(3.9 dt Sco=raSe »
where S, is a unit hypersphere passing through Sy, and S¢., and orthogonal to
Sae
To obtain the expression of xq, and Sw,, we differentiate (3.7) along the

eurve, then we find
d 1 d&
at Se= (GRS S SL

de L de L de L de
ds +a ds +II°°V ds +H{t’8)W)‘AA]

A
+( Ly
Or

d 1 &* e
(3.10) 'd't"S("): ’t.z[(gw ds 2 + L0t ds )Ao

A A
(‘Z + (gata’ —-a") ds + 172, (:,; )Al]

by virtue of (3.8). where gs denotes the covariant defferentiation along the

curve with respect to the Christoffel symbols I}, = {5}, say,

S da? ae qer
= e I
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Thus if we put
d
(3.11) dt-S(w>-- [ 4, +v*4,] ,
where

=g’ ,
(3.12) { e

'V
V== + (gunata’ —a,°) +II’ :if s
we have
icn)-—,:—lgfﬁ— where g, =gnv*v .
t‘-)
Consequently, the equations (3.9) and (3.11) give
(3.13) Sy =Lt Au+ 4,
where
0 A
o=t and (= U .
@ ks ¢ Loy
A
1t is to be noticed that {%,= (fii and (%, are unit and mutually orthogonal
vectors.
d
It J{S@)=O, we have
d & &
dt Sy = dg'sm':‘dtis“scfo'—‘o,

and consequently
1 0l
S(O): [S(o)]o+t[S(1)]o+ 2 t'[S(m)]o 3

which shows that S, describes a circle passing through two fixed points [Se]o
and [Scw]o and orthogonal to the fixed hypersphere [ S, ]e
For a circle, we have, from (3.10),

. A8

Sa*
(3.14) I gy a + II}\0 7

=0

and

g
ds Tds

The equations (3.14) being a consequence of (3.15), (3.15) are differential
equations of a circle.”

(3.15) + (guwa'a’ — a") + i,

=0.

Returning to the general case, we differentiate the relations
Sw'S8=0, 8u:Se=0, Sey'Sx=0, S Sx=1
along the curve, then we find

1) K. Yano: Sir les circonférences généralisées dans l’espace a connexion conforme.
Proc., 14 (1938), 329-332,
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, d d d d
NICEE a‘t"‘Sc-’y‘—‘O, Saye di S =0, Ky +Ser* - dt S‘m=0, S@)‘ “di Sm=° o
Thus the hypersphere
d
—cnSwm+ 5 So

passes through the points Sg, and Sy and orthogonsal to the hyperspheres S,
and S, and consequently, we can put

d
(3.16) — S+ at Se=rtxSw )
Whel‘e S(3) iS a unit }ersl)hem Imsing throlwh the mints S(o) and S('oo) and
orthogonal to the hyperspheres S, and S,
Substituting (3.4) and (3.13) into (3.16), we find

. 0
: 1‘ [(— Koyt + ’ii'(‘i‘:)— + H;;.vcl'("s') :1))44-0
t

8
+ ( ds C?z) + C"@)C%;))A,\] =Ic<zy9(s)
by virtue of the relation

It =0,
where we have put

N
D= "dg *
Thus, we can pub
CAP) Sy =Cltndo+Co04a,
where
1 dg
23) = _z;;;—[_k(‘)"' dsm +II:VC'&)C:1)] )
1 ) ~
o o ot O
and
7‘70>=32 Ky
Form =g 5, Cto+ 0% (35 G+ Coll)
@ &= Juv ds *® DM |\ gy C®T @ )¢
Differentiating the relations

Sw*8»=0, Say*Su»=0, S@e}"s'cxi:o » 82*S»=0, S&*'S»=1.
along the curve, we find

d d d
Sew g5 S =0, Say* dt"S@): 0, Seo* —d‘t“'Sm:O ’
d

d
ket 8e 5 Sm=0, 8w g S =0

Thus the hypersphere
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d
kSt 7 Sw

passes through the points Sy, and S, and is orthogonal to the hyperspheres
Say, S and Sy Consequently, we can put
d
(3.18) kS + - Sw=kwSew »

where S, is a unit hypersphere passing through Sy, and S, and orthogonal to
Sw, Se and S
Substituting (3.13) and (3.17) into (3.18), we find

ey Gt IR0 | o
14
1T; )
+ —t.—[tm)C &+ vy ®»+CeL 3)]441:&8)‘9«:
by virtue of the relation
gp\'c%%c:l)=o ¢
Thus we can put
(3.19) S(4)=cg4)Ao + Céa)AA ,
where
CO — 1 0 d 0 Fp VvV

0=~ kate + - Cm+ Tttt

A 1 A S ’y A I

®=F = kele T t® +Coltn
and

a o 8 6 'V v
k=0 =gy (kcbc'&) + 73 Co+ C&;C'&)) (kcz)Cy ot tet C"@,C@))

Proceeding in this manner, we arrive at the formulae

d d d
2t So=8u, W‘Sa): Sy 5 “Jt‘S@:lca)Sm y

d
W'gm =knSw +x8m 5

d
—d?Sm: — ke St k»Sw »

3.20 d
(3:20) ‘d't“Sco= —kSe+koS®

d
at So-1=—kn-5Sm-2 +km-1Sm

d
L d_tsc”)= — K181y

where Sgiy, Seeyy ++e; Sy are 1 mutually orthogonal unit hyperspheres passing
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through two points S¢, and S, Sty being the point on the curve and S, being
a unit hypersphere orthogonal to the curve.
These are the Frenet formulae with respect to a projective parameter.”

1f we put
f S(o):tAo ) S(l)= ‘L‘ A{) +C€‘1)A3 )
Ser= (= L w4 L) v L]
t ¢ £ t

(3.21)

! Sy =CloAs+L{iA4s,

S =Cln o+t 4a,

S(z._l) = an_l)Ao + C (n-:)Aa )
L Sen= Cg”)Ao + Cz:n)Al ’

the quantities (7, and {2, satisfy the relations

(3.32)

and

(3.23)

v
9SSty =84

r

gs Co + LG C 0 =kay + ket

_ﬁ_ 23) + L :VC&)QI) = k(z)c(()g) + k(s)c((.,n )

ds
;ls o+t = —kolm + kbt »
d

ds tamny F LG 3G = — k-85 + Een-nElm »

*%Cgm + IS0 = — 18 ta- «

\

b
[ ds & +CCh =kl ,

8
ds Qs) + QS)Q!) == k(‘-’)Qﬂ) + k@)QQ )

d .
! ds Coo +E0Ct = =kl + el »

)
s Cny+ Coney = —ken-20 -nt lc@...gQ,.) ’

8
L _(E Cén) +Q‘n )CEIA) = -k(n—l)C(n-l) .

1) K. Yano: Sur la théorie des espaces & connexion conforme. Journal of the Faculty
of Science, Tokye Imperial University, Vol. IV, Part, 1, (1939) 1-59.
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The Frenet formulae (3.20) are established with respect to a projective
parameter £, It is evident that the parameter ¢ is invariant under both change
of factors and transformations of coordinates. But the parameter ¢ being defined
by a Schwarzian equation, it is determined only up to a transformation

at+b
ct+d ’

Consequently, the Frenet formulae (3.20) is certainly conformal but contain
some thing arbitrary depending upon the choice of the parameter ¢.

The modification of these formulae will be discussed in the following
Paragraph.

But the Frenet formulae (3.22) and (3.23) do not depend upon the pro-
jective parameter, consequently these are purely conformal Frenet formulae for
the curve.

It will be easily verified that our formulae (3.23) essentially coincide with
those obtained by the present author in the study of the linear connections of
Wevl-Hlavaty and of its application to the conformal geometry."”

(ad—bex0).

1) K. Yano: Sur la connexion de Weyl-Hlavaljy et ses applications & la géométrie
conforme. Proc. Physico-Math, Soc. Japan, 22 (1940), 595-621.



