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6. Finite Groups with Faithful Irreducible and Directly
Indecomposable Modular Representations.

By Tadasi NAKAYAMA.
Department of Mathematics, Nagoya Imperial University.

(Comm. by T. TAKAGI, M.I.A., March 12, 1947.)

The structure of finite groups possessing faithful (isomorphic)
irreducible representation (i. r.)in a non-modular field has been deter-
mined by K. Shoda his argument was supplemented by Y. Akizuki.
The result is: A finite group ( possesses a faithful i.r. in an (ar-
bitrary) non-modular field, if and only if for every ideal factor of the
product of all minimal abelian invariant subgroups the inequality

(S) c m/x

is fulfilled, where c, 1 and 1 denote respectively the number of
minimal factors in the ideal factor, the order of the minimal factor,
and the number of elements in the (-automorphism quasifield of the
minimal factor.

A somewhat generalized problem to determine those finite groups
which have faithful non-modular representations with t irreducible
components (i. c.), where t is a natural number, has been considered
by M. Tazawa". The result is to replace (S) by

(T) c [(t-1)c/t] m/X

Now in the present note we consider modular representations.
Here i.r., directly indecomposable representations (d. i. r.) and directly
indecomposable components of regular representation (d. i. c. of r.r.)
are three classes of representation of particular concern. Our results
about faithful representations of these kinds are similar to the above
theorems of Shoda and Tazawa, and assume more or less expected
forms. Namely

Theorem 1. Let K be an arbitrary fieM of charactristic p, and 9
the product of all abelian minimal subgroups of order prime to p in a
finite group . Then i) ( possesses a faithful d. r. resp. representa-
tion with t directly indecomposable components (d. i. c.)) in K if and only
if (S) (resp. T)) is satisfied for every ideal factor in 9; ii) The same
is also necessary and sufficient in order that ( have a faithful d.c. of
r.r. (resp. representation decomposed (directly) into t d. c. of r.r.) in
K; iii) ( has a faithful r. (resp. completely reducible representation

1) K. Shoda, Uber direkt zerlegbare Gruppen, lourn. Fac. Sci. Tokyo Imp. Univ.
Section I, Vol. II-3 (1930), 7" correction, Vol. II-7 (1931).

2) M. Tazawa, ber die isomorphe Darstellung der endliehen Gruppe, Tohoku
Math. J. 47 (1940).

3) For modular representations of finite groups, in particular the theory of Brauer-
Nesbitt, see the references in M. Osima, ff’[,- :e-’- , H::]Aad 16
(1942)" in the following we shall not however need any deeper part oi the theory.
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with t i.c.) in K if and only if the same condition for is satisfied
and, moreover ( has no invariant subgroup = 1 whose order is a power
ofp.

Perhaps o some interest, though not unexpected, is the corollary
that if possesses a faithful d. i.r. whatsoever then it has a faithful
d. i. . of r. r. (and similarly for representation with t components).
interest is also the relationship between modular and ordinary repre-
sentations, and in particular the third assertion o the corollary* If

has a faithful i.r. in a modular field then it possesses a same in
any non-modular field. If has a faithful i. r. in a non-modularfield,
then it has a faithful d. i. . of r.r. in any modular field. If pos-
sksses faithful d. i. r. in two modular fields of distinct characteristics,
then it has a faithful i.r. in any non-modularfield. (And, exactly the
same for representations with t components).

Also proo runs similarly as in Shoda 1. c. (or Tazawa, 1. c.); we
have only to employ some elementary lemmas on modular representa-
tions.

Lemma 1. Let M(() be an i.r. (resp. d. i. c. o r. r.) o . Then
its restriction M() to an invariant subgroup is decomposed directly
into a certain number o i.r. (resp. d. i. c. o r.r.) o mutually con-
jugate in . Every i.r. (resp. d.i.c, o r.r.) m() o appears as
a direct component in the restriction M() o a suitable i.r. (resp.
d. i.c. o r.r.) o g. Proof" The first assertion concerning i.r. is
well known and is in act valid in a ar more general case (where
neither , nor (:) need to be finite). As to the second (con-
cerning i.r.) we have only to consider, or instance, the representation
o ( induced by m() and its irreducible (not necessarily direct) con-
situent, whose restriction contains m(). Let next m() be a d. i. c.
o r.r. o , and N() be the representation o induced by it. N(()
is directly decomposed into a certain number o d. i. c. o r.r. o
For, i e is a primitive idempotent in the group algebra () o (over
K) such that the let ideal ()e defines m(), then N() is defined by
the direct summand leR ideal ()()e-(()e of the group algebra (()
o . On the other hand the restriction N() is directly decomposed
into components conjugate to m() in (. In act a representation o
a group induced by a representation o its invariant subgroup o finite
index is directly decomposed, when restricted to the subgroup, into
representations o the subgroup conjugate to the original one. Com-
parison o these two decompositions shows tt each d. i. c. o N(),
which is at the same time a d. i. c. o r.r., is decomposed directly into
in conjugate d. i.c. o r.r. o , when restricted to . Further the
relation ()()=() shows tt every d. i.c. o r.r. o , as well as

4) The first part of the corollary is trivial. In fact we have only to consider an
Lr. with the aithful modular constituent. As to the second part a d.i.c, of modular
r.r. containing the aith[ul non-modular i.r. suffices, as our proof below shows. It is
rather likely (and desirable) that a direct representation theoretical proo can be given
to the third (as v0ell as to the second) assertion o the corollary.

5) Cf. A. H. Clifford, Representations induced in an invariant subgroup, Ann.
Math. 38 (1937).
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that of , appears in such circumstance (with suitable m()). Now
the assertions about d. i.c. of r.r. in the lemma are ready to verify.

Lemma 2. Let ( and be as in Lemma 1. Let M(() be a re-
presentation of ( such that its restriction to I/ is directly decomposed
into a certain number of mutually in ( conjugate representations m(l),
m(./), m(). Let be the kernel of the representation M((),
and the kernel of m(/). Then ...--/, and this
is the greatest invariant subgroup of ( contained in one of ’s, say
). So, if M(() is faithful, then contains no invariant subgroups= 1
of (. Conversely, if ) contains no invariant subgroup=l of (9
then the restricted representation M(gl) is faithful (on ).

Let now be in particular the invariant subgroup generated by
the totality of minimal invariant subgroups of (. Then a representa-
tion of ( is faithful already when it is so on . Thus we see M((9)
is faithful if and only if the kernel of m() contains no invariant
subgroup*l of (.

Let next . be an invariant subgroup generated by (not necessarily
all but) some minimal invariant subgroups in (@. It is uniquely de-
composed into the direct product-- x, x x x ,,
of a product of non-abelian simple invariant subgroups and abelian
invariant subgroups , of prime power orders with different primes
&. Each is of type (l, l, l). If l=p its representation is com-
pletely reducible and its cyclic factor groups, and only those, have
faithful i.r. But if l-p its unique i.r. (resp. d. i. c. of r.r.) is unit
representation (resp. faithful). On the other hand each simple factor
in 9 certainly has a faithful d. i. c. of r. r., while it possesses a faithful
i.r. if and only if its order is not a power of the characteristic p.
Now, every invariant subgroup of 9l is regular with respect to the
above decomposition of , that is, is decomposed into subgroups ,

of , -- x :, x ., x x :,.
The Kronecker product of representations of (/)’s and simple factors
of 9 is faithful for / if and only if each of them is faithful (on
each subgroup). Moreover, in case the underlying field K is algebraic-
ally closed, the Kronecker product of i.r. of direct factors is an i.r.
of the product, and every i.r. of the (direct) product is obtained in
this way. Exactly the same holds also for d. i.c. of r.r. However, a
(finite) group has a faithful i.r. (resp. d. i. c. of r.r.)in a field if and
only if it has a such in its algebraic closure. These together enable
us to combine the above results about direct factors into

Lemma 3. The invariant subgroup l/generated by some minimal
invariant subgroups of ( has an i.r. (resp. completely reducible re-
presentation with t i.c.) in K whose kernel contains no invoriant
subgroups= 1 of (, if and only if 1) every with l./) possesses an

6) Observe, in case /( is imperfect, that the group algebra is separable.
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invariant subgroup (resp. t invariant subgroups, not necessarily dis-
tinct) with cyclic factor group (resp. cyclic factor groups) which (resp.
whose intersection) contains no invariant subgroups1 of t, 2) no l
(with :1) coincides with p, and 3)no simple component of , has a
power of P as its order. (Here 2) and 3) may be combined into one
condition 0) 92 has no invariant subgroup 1 whose order is a power
of p.) . possesses a faithful d.i.c, of r.r. (resp. representation
decomposed directly into t d. i.c. of r.r.) in K if and only if the
condition 1) is fulfilled.

Applying this lemma again to the product 9 of all minimal in-
variant subgroups we have now

Theorem 1’. Let be as in Theorem 1 and decompose it into-- x x x

where are subgroups of prime power orders with different primes l,
u:p). ( possesses a faithful r. (resp. completely reducible representa-
tion with t L c.) in K, if and only if ( has no invariant subgroups: 1
whose order is a power of p and moreover the condition 1) (of Lemma
3) is satisfied. ( has a faithful d. i. c. of r. r. resp. representation
directly decomposed into t d. L c. of r.r.) in K, if and only if 1) is
fulfilled, and exactly the same for a faithful d. L r. general (resp. re-
presentation with t d. c.).

Only the part concerning general d. i. r. is left to be shown. Let
M(() be a such of (. Its restriction M() to is completely
reducible, since the order of Y is prime to p, and the irreducible
components of M() are all conjugate in (. Take namely the primi-
tive idempotent e belonging to one of them in the commutrtive group
algebra (), and let e, e’, e", be its distinct conjugates; they are
orthogonal. Denote their sum by E. E is an idempotent and m:Era
+(1-E)m gives a direct decomposition of the representation module
m of M((). Hence necessarily m-Era, and this gives our assertion.
Thus Lemma 2 is also applicable to M(() with respect to :. The
necessity of the condition 1) is now immediate. But the sufficiency
is contained in the more precise assertion concerning d. i. c. of r.r.

The conditions in Theorem 1’ are all of purely group theoretical
nature, and in that sense Theorem 1’ already gives a solution to our
problem; also two corollaries alluded above follow already from
Theorem 1’. But we may replace 1) by (S) (resp. (T)), to obtain
Theorem 1, in virtue of the (purely group theoretical) lemma (of
Shoda-Akizuki) Let 2 be a (F-) ideally completely reducible abelian
group of type (l, l, l) (l a prime)with an operator group F: I:
I] x ’I. x fo (% Y-simple and all mutually F-isomorphic). The
condition (S) is necessary and sufficient for the existence’of a subgroup
with cyclic factor group and containing no F-subgroups1; (together
with a combinatorial lemma of Tazawa, in case t)1, that the largest
number s, such that we can divide c symbols into t parts (not neces-
sarily without common symbols) with s symbols in each, so as no
symbol is common to all, is [(t-1)c/t]).


