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48. On the Theory of Conformal Transformations
between two Rheonomic Spaces.

By Michiaki KAWAGUCHI.

(Comm. by KUBOTA, M. J. A., July 12, 1949.)

Introduction. Defining the conformal transformations in a rheo-
nomic space of A. WUNDHEILER" we state in the present paper the
conformal invariants and introduce four special rheonomic spaces
(rheonomic space without stretching, sub-rheonomic space, quasi-
rheonomic space, rheonomic flat space). By the help of these in-
variants we find also the conditions for that a rheonomic space be
conformal to one of these spaces and the conformal properties of
sub-space.

§1. The conformal parameters of connection. Let V, be
an n-dimensional rheonomic space whose fundamental differential
form is given by

1.1) ds? = o, da’ da’ + 2a; dx' dt + A di?
and whose parameters of connection
1

I = > (90 + 93 Qs — 91 0ig),

I = _% (3, Gin + 3s0n— 81 as).

We consider the case that points of the domains D, D of the two
rheonomic spaces, V,, V., are in one-to-one correspondence to each
other in such a way that the following relation holds good:

(1.2) ds = ads,
that is,
aﬁ=0‘2aij, &i=ozai, .A—=O'2A,

where o may be a function of «%,¢. In this case we say that the
correspondence between the two spaces is conformal in the domains
D, D and that the transformation from one space to the other is a

1) Cf. A. WUNDHEILER, Rheonome Geometrie. Absolute Mechanik. Prace
Mathematyczno-Fizycyne, 40. (1932), pp. 97-142.
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conformal transformation. Then the parameters of connections I7;,
I'¥in V, and T}, 1% in V, are related by
1.3 T% = I+ 8 o3+ 8} s—d" ay,
Tt =TIt+8e,—d0;y —aic®

where o; = 9;l0g o, 0, = 9,l0g 0, " = a¥ o}, & = 0¥ o;. We obtain after
a contraction in (1.3)

— 1 T9 K/ 1 T fa
(14) o = —’)_’L— (Tni—Ioj)’ oy = —?:L-(Tg—['a)-

Putting (1.4) in (1.3) we have two conformal invariants

(1.5) K= ri—-Lor—Lo rpr Lo ryay,
n n n
(1.6) Kik — Bk__;];b_ kI'vggj l_slc [vg 1 124 oah a;.

which are called the rheonomic conformal parameters of connection.
(1.5) is the same form as the T. Y. Thomas’s conformal parameters
of connection in Riemannian geometry. Corresponding to I';** = If—
& I'l; which appears in the expression of the covariant differential of
a strong vector”

&F = dvf+ I sl v+ ¥ v dt,
where exists the invariant
= Kt —d

which is essential in our theory. In consequence of the changes of
Iy, I't, ay, ai, I', I'! under rheonomic transformations a' = o' (x, ¢) :

e = (%" 0 ., O%"
YT R \ox ax " dxlioa’)’

9 ( 9x" 3’ ox" o™
Iy = (8 8 W0y B
C T o \awtiot " v " datoet!/)’
3’ o™ » __ 3x’ da™ 9’
(1.7) aiy = -‘éz,;malm’ ai = @n'a't?“lm'kg';ﬁa“
Iy = —gf— %+ 9/ log 4,

1) A. WUNDHEILER named it ‘Stark Vektor’.
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i
PM._ rh+nh+8;]0gd, d = .’(_]_@..
3@”"
resp.
these invariants are transformed as follows:
o _ 3" ( 3 890’ 2 1
K 9" \ oz’ aw” x”' x”) — 8 ——a""”\[rﬁ,,a{,,,‘)
92" (da’ oY g 3% "
Ky = K + Kk+ )
T ar\eg ot ow o’ et

1 e 1 1 m
— L 0

where } = 9;log 4, ¥, = 9,log 4. Consequently we can find easily
the transformed formulas of K*"* = K/*—d'" KJ}'.

§2. The conformal stretch tensor. Rheonomic spaces being
conformal to that without stretching. Under conformal transforma.
tions the stretch-tensor

(2.1) Wtj = -%—(az afij‘ajli*aﬁ/j)g)

varies in the rule
(2.2) Wi = {Wy+ay (c.—a" on)},
by the help of
ais = o (aj+ 20 00+ o an a).”

Multiplying @, and summing up with respeet to ¢, 7, (2.2) gives us

2.3)  oi—d'or = %-(W-—W), where W = Wya¥,

Substituting (2.8), (2.2) goes into
(24) W,‘,——l—dﬂ,ﬁ;= G'Z(W«;,‘.;—-l-(lg; W).
n n

Since

T=A4-aad = A—dta;d’ ——0'2T

1
1) kel = '—(5 G +-07 1)
2) This is nothmg but WUNDHEILER’S ‘ Dehnungstensor”’ and «:; = ;o — [0y .

1
3 aueg = 7 (0 05— 0).
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we have
2.5) -,}-,(Wi,.—%aﬁ W)= %(W—% agW).

This conformal invariant is a strong tensor, which is called the
conformal stretch tensor and denoted by 2.

From W; =0, it follows 2, = 0. Inversely if 2;= 0, we con-
sider the differential equation

(2.6) -—-—1— W = a,—a" ap,
n

whose solution exists always and this solution ¢ makes ﬁ—’ﬁ equal to
zero. Consequently

Theorem 1. The vanishing of the conformal stretch tensor is the

necessary and sufficient condilion that a rheonomic space be conformal
to that without stretching.

§ 3. Rheonomic flat space. Sub.rheonomic space and quasi-
rh onomic space. In a rheonomic space the curvature is defined by

(8.1) (358—83)u' = Ry (x, t) w5t 8L+ Riy (x, t) (3 dt—88 di)
where u’ is a strong vector and 8, 5 are two arbitrary dispacements.
In the case dt = 0, dt = 0, (3.1) has the form
(65—83) u* = Rin (, t) 1’ da’ da’.

When R, (x,t) is equal to zero, the virtual space is a flat space.
We shall call the rheonomic space with Rj, = 0 the vrheonomic flat
space. For the dispacements dz* = 0, dt = 0, (3.1) is reduced into

(36—83) u' = R (x,t)w da” dt
which vanishes for R (x,%) = 0. In the Canal” space the last equa-
tion means the flatness of any surfaces whose 2-direction contains
the direction of trajectory. The rheonomic space with R, = 0 will

be named the sub-rheonomic space.
The definitions of Ri., Wy, lead us to the important relation

3.2) T = 0 ( VVU/}:" Wxﬁ/z)-

Hence we have

1) A WOUNDHEILER; the previous paper. § 9.
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Theorem 2. RE; con be represented by derivatives of the streich-
tensor Wy and a;.

Let us call the rheonomic space with W;, = 0 the quasi-rheono-
mic space, then we obtain the following theorem

Theorem 3. A sub-rheonomic space is a particular quasi-rheno-
mic space, and o quasi-rheonomic space s a particular rheonomic
space without strelching.

§4 The condition that a rheonomic space be conformal to
one of the other three special ones.

1. By using the same method as that in Riemannian geometry?,
we can conclude that

Theorem 4. The necessary and sufficient condition that o V,
for n>2 be mapped conformally on a rheonomic flat space is that
the conformal rheonomic curvature tensor

e /e

nig = Lop— 7’1,_— (Rh[i ./]+ Qnfs RJ]) + Qs 5;;}

(n —1)( 2)
be a zero temsor when n = 3 and when n >3 that
Cry = (n—3) CI;:;ij/k

be a zero tensor.
2. Under the conformal transformations Wy, varies in the rule

4.1) I/T}:'j/]c = [ Wyn+ay; Tu—2Wiyon+2Wi; o' aiyi]
where Ty, = (¢,—a" os). Multiplying by @; and summing with res-
pect to 7,7, we obtain from (4.1)

(4.2) T, = 712 @y Wg—at W)

Substituting (4.2) in (4.1), we have
(4.3) —W_z/lc = GZ[W::/E"‘Z W}a(j 0',;)+2Wz(j a a@]c]
= g? [W;;/]g—z W/f(', oyt 2 Wﬁ‘, a ai,,c], where

= Wy—La, W,
n

Multiplying by @* and summing with respect to j, k, the last equa-
tion gives rise to

1) Cf. L. P. EISENHART ; Riemannian Geometry p. 89.
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(4.4) a* Wip = o Whp+n Wi
a) When the rank of (W}) is n, it follows from (4.4)

(4.5) o = LW W oo W W,
n
W+ being determined from W3 W*# = 8. From (2.3) we have
(4.6) o= a"o-,,-l—-’—'lz—(W— w).
Substituting (4.5) in (4.8) we get the conformal invariant

R ; 2
IIlec = a"h‘( r?/k +-’)—’I: W]’é(] W'K/r)l Wl':n/m'—'%‘ Wz(?j/l a’r)/c)

Now we put WW =0 in (4.1), (4.2), (4.3), (4.4) and (4.5), and denote
them (4.17), (4.2'), (4.8'), (4.4’) and (4.5") resp.. For that (4.5') satisfy
{4.1’) it is necessary that /7, = 0. The conditions of integrability
of (4.5') and (4.6') are

Wiijo Wo+ Wi W*im = 0,
@T) W WE a4 Wi 8 Wi =5, Wi/ )
[y + W/}, + Wﬁ/ (a 8], W*”-—i‘j, W*/k{') = 0.

Hence we have the theorem

Theorem 5. The necessary and sufficient condition that a rheo._
nomic space be mapped conformally on a quasi-rheonomic space that
T, = 0 and (4.7) de satisfied.

b) When the rank of (W}) is <n, =0, from (4.8/), (4.4")
(4.8’) 0= ;;'/fc"‘%-dlg/s Wjﬂ;z/l’—z chk(j (2% a.

Now we shall denote the rank of the matrix (Wi; a1, Wigdazy -« .,
Wi @ys) With . When a = n, we can find the condition in the same
way as the previous a). When «<n, the differential equations
(4.8") have their solution always, hence it requires no condition.
When o> n, there exists no conformal transformatiou which satisfies
(4.8").

3. Under conformal transformations R%;, varies in th2 rule

(4-9) R’ifi =a% (ﬁ;;m““ sz)
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= ,;:1; + 20/“ a/¢[l T/;,]"“ 2(1:“ W«,:[;, 0‘1] + 2 me O'm a'))]i akl.
= R:t + Zakl a;q;[l T,;,]—-Za,"l W;([:h G'l] -+ 2 W:”k[l 0‘m ah]g a"’.

Putfing &k =4 in (4.9) and summing with respect to &k, we have
(410) T = L AR Ri—no" Wa}.

Substituting (4.10) in (4.9) we get

(4.11) ge—_ O _p ool o amp & p
* ni hie a,;},a RlJ = RM— '—RM
n—1 n—1 n—1

PR A & Rl + o™ (~— 1 b ;;,,_._._1“ aua® Wi
n—1 n— n—1

— & Wih+a W% a,.m> .

When R =0, the left hand side in (4.11) is equal to zero. The
same discussion as that in § 2. gives the condition that a rheonomic
space be mapped conformally on a sub-rheonomic space.

§ 5. Conformal properties of sub.space. Let the sub-space V,,
in a rheonomic space V, be defined by

(6.1) u* = u® (', t) a=1,....,m,
then the metric functions of V,,

3’

Ooy = UiVl 0y, a, = biblay+bia,, where b= e

are transformed as follows
(52) daﬁ = ozaaﬂy Gy = 0'21100
by a conformal transformation. In use of (5.2) I}, [ vary into
Py = Iy + 8 00 + 8 05— 0" gy,
(5.3)
Z“ﬁ(? = 11‘;1'1'8;0'3““(1“0"{'-&30“1,

where ¢4 = bio;. Let D, be D-symbol and D,b. = bip,b; = bk (b, +
o b ;), then the Euler-Schouten’s tensors

.Hép - Da ?;, Hci = D;bi
are transformed in the rule

(5.4) Hiy = 0,04 +bED Tiy—bi Il = Hiy—aks (07—l b g™) oy,
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(6.5) H.=0b:F.b = H:

by a conformal transformation.
The conformal invariant produced from (5.4) is

1
Jp = Haﬁ""’ -'l;auﬁ aTGH;:S,

whereas the relation MJ, = 0 is also invariant conformally, that is,
in the terms of geometry

Theorem 6. Under conformal transformations the umbilic points
of @ rheonomic sub-space is invariant conformally and consequently a
total umbilic surface is also same.

Since H; is a conformal invariant, the relation H: = 0 is invarian
conformally. From that follows

Theorem 7. The property that b is parallel along t-curve remain
unaltered under conformal transformations.



