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§0. Introduction. Recently I. Gelfand and D. Raikov [3]V have
established an elegant theory of unitary representations of locally
compact groups, which may be congidered to correspond to Peter-
Weyl’s theory on compact groups. On the other hand, Peter-Weyl’s
theory was extended to the theory of harmonics on compact homo-
geneous spaces by H. Weyl [1] and E. Cartan [2]. The purpose of
the present paper is to give a similar extension to Gelfand-Raikov’s
theory®.

Let 2 be a homogeneous space with a locally eompact group G
of homeomorphisms. We always assume the following condition:
*) {If Do 18 any fized point of 2, then the subgroup H = {c; oeG,

ol = m}of G 1is compact.

In §1 of the present paper, we introduce some preliminary
notions. In §2, we discuss the correspondence between positive
definite functions on £2 and ecyelic unitary representations, and show
that so-called extreme positive definite functions correspond to irredu-
cible unitary representations. We establish in §3, the theorem
concerning the topologies in the set of positive definite functions
on £, and in §4, the theorems of approximation of so-called in-
variant continuous functions on 22 by means of linear combinations
of elementary positive definite functions and the existence of suffici-
ently many irreducible unitary representations.

The author expresses his hearty thanks to Professor K. Yosida,
who has suggested him the problem and encouraged him with kind
discussions, and to Mr. K. Nomizu, who has read the manuscript,
and suggested that the proofs of Theorems 9 and 10 (§ 4) may be

1) Number in Literature at the end of this paper.

2) It is impossible for the present aathor to read the paper [3], but the papers on
the same subject by R. Godement [4] and by H. Yoshizawa [56] have become avail-
able to him.
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reduced to the case of groups; the author’s original proofs were
more complicated.

§1. Preliminaries. Let 2 be a homogeneous space with a
transitive locally compact group G of homeomorphisms. We shall
denote the points of £ by »,q, s, t, and the elements of G by p, o,
7, especially the unit element by e. Fix a point p, €2, and assume
that (*) the subgroup H = {c; o = Do} of G s compact. We shall
consider a fixed triple {@, G, no} and denote by H, the set{p; ppo = p}
and by p, any element of H,; we easily see that
1,1) H,, = ¢H, for any o€ G.
For any KC G and A< 2, we shall denote by KA the set {op;
acK, ped} (C9).

Let {V,; a€A} be a comlete system of conditionally compact
neighbourhoods of e. Then the system {V,p; pe®, acA} gives a
uniform stsucture (see [7]) in £. We can consider that 2 = G/H
and they are locally compact uniform spaces; then we can define a
left-invariant Haar measure on G, and that on H such as the total
measure of H is equal to one, and algo a G-invariant measure on £
(see [8] p. 10 and pp. 42-45) ; and we consider the product measur on
P2 =0x02 We shall use the notations L»G), L*(2) and L*(2?)
1L p<») as usual.

Definttion 1. A triple {9, Ulo), £} of a Hilbert space 9, a
group {Ulo)} of unitary operators on § and a point {9, is called a
unitary representation (abbreviated to u-representation) of {2, G, po}’
if there exist

i) a strongly continuous mapping (p — {,) from the space £
into the sphere & = {£; || &|l = «}? in O («: positive constant) such
that po—¢; and

ii) a strongly continuous homomorphic mapping (¢ = U(s)) from
the group G onto the group {U(s)} such that U(s){, = {,, for any
c€G, peq.

A representation {9, Ulo), ¢} is said to be eyclic? if {U(p,);
pef} spans §, and to be irreducible if there exist no U(s)-invariant
proper subspace in $.

8) |} -+ 1| and (s,-) denote respectively the norm and the inner product in the Hil-
bert space .
R4)k It is called simple in [4] and [5], we call it cyclic following after Gelfand and
aikov.
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Definition 2. A complex valued measurable function A(p, g) on
£ is called to be invariant, if it satisfies the condition :
1,2) h(op, oq) = h(p, q) for almost all <p, > €L? and any ¢€G.
We shall denote by J the totality of invariant functions.

Definition 3. A complex valued function f(p,q) on £2 is called
positive definite (abbreviated to p.d.), if feL=(2? and satisfies the
conditions (1, 2) and

(1,3) [§/ (@, Do)z (@ dpdg =0 for any xeL'(9).
We denote by P the totality of p.d. functions on £2

Corollary. If f(p,q) €P is continuous on 2%, the condition (1,3)
is equivalent with the following one :
1,3) > e f(ps, p;) =0
for any complex numbers ay,- - -+, a, and arbilrary pi,----, P, €L and
we have
(1,4) £, ) =0, f(p, q) = flg, p) and |f(p, Y| <fp, D),

where f(p, p) is independent of p (by (1,2)).

The equivalence of (1,3) and (1,3') is obtained by the same way
as in [8] pp. 55-57 and (1,4) is easily obtained from (1,3').

The following Lemma 1 and Theorem 1, which may be proved
easily, give important examples of p. d. functions:

Lemma 1. For any §(g)€ L2(G), the function

(15) Ap,) = { dp{ £, ) do E(Tp, Tp)d®

28 @ continuous p. d. function on 2.
Theorem 1. If {9, U(o), {} is o u-representation of {2, G, no}, then

S, 0) = (U &, UP))=((s, §) i a continuous p.d. function
on 2.

If &(o)e L}(G), then S £ (p0)do depends only on p and is inde-
pendent of special p,€ H,, and we have

(1,6) {odn| £(p.0)do = | £()dr

(see [8], pp. 43-45). For any function z(p) on £ we can define a
function €.(0) on G by £.(0) = x(sro); then &.(p,) = 2(p) for any

5) The right side of (1,5) depends only on p and ¢, and is independent of special
pp€H,, and p,eH,, by the left-invariance of the Haar measure on H.
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po€H,. From (1,6) and the fact that the total measure of H equals
one, it is easy to show that

Lemma 2. For every &(o)€ LNG), the funciion

x(p) = | £(p,0)do
belongs to LK) ; conversely, for every x(p)eLY(L), the function
&:(0) = (o)

belongs to LNG); and x(p) = x (p).

Now we shall prove the following

Lemma 3. In order that an invariant function f(p,q) be p.d.,
it 18 necessary and sufficient that the function @fc) = flapo, 0o) 8 &
p.d. function on G (see [5] §3).

Proof. From (1,6) and Lemma 2, we have the following two
relations, from which this lemma is deduced at once: for any £(o)
e L{G)

1,7 s S Gz¢’l(7'_1°' )€(0)é(r)dadr
= S ] s of (@D, TD) € (0)&(7)dodr

= Sﬂsﬂdpdq SHSJ(PWPO, Pq’l'po)f(ppa-)aa.r—)da.dr
= S Qsﬂf (®, Q)dpdqsnf(ppo-)do. SH?(?):I:’:de

= |[.f, Qwip)wlg)dpdy ;
and conversely for any a(p)e LYQ)

(1,8) [{r@, Do)zid)dpdg = | . fp, @) (W)e: (@)dpda
= [ otr10) eL)EATIdodr (from (1,7).)

§2. Positive definite functions and cyclic unitary representations.
Theorem 1 (§1) and the following two theorems show the corres-
pondence between p. d. functions on £2 and cyclic u-representations
of {2, G, po}. It is easy to show

Theorem 2. If {9, U(s), {} and {9, U'(o), {'} are cyclic u-repre-
sentations and

(Ulps)e, Ulp)0) = U'(p,)!, U'lp)C) for all <p, q) € &,

then the above two representations are mutually unitary equivalent.



No. 1.] Positive Definite Functions on Homogeneous Spaces. 21

We shall prove the following
Theorem 3. For every p.d. function f(p,q) on 2, there exists
a cyclic u-representation {9, U(e), {} such that

fp, @) = (Up,)¢, Ulp,)C) for almost every <p, q) € 2.

Proof. Since @do) = flopo, po) is a p.d. function on G (by Lemma
3), there exists a eyclic u-representation {9, U(s), {} of the group
G (see §§3 and 4 of [5]) such that

@i o) = (U(e), ¢) for almost every ce€q.

Hence, by the relation between the measure on £ and that on G
(see §1—and [8] p. 45), we have

£, @) = odp,*p,) = (Ulp, )¢, €)
= (U(p,)¢, Up,){) for almost every (p, g€ L.

In order to show that U(p,){ depends only on p and is independent
of special p,eH,, it is sufficient to prove that reH implies U(r){ = ¢.
Since r€H implies v = 1y, we have

(U@)E, U()) = flops, 7p0) = flows, po) = (U(o)E, §)

for any o€, r€H; then since {U(c){; oc€G} spans 7, we have
U@ =C; and {U(p,){; peL} spans 9, as every o€G belongs to a
certain H,.

Therefore we can put U(p,){ = {,, then

U(0)e: = Ul@)U(p)§ = Ulpepr)l = Cop (by (1,1)).

We shall now show that the mapping p — {, is strongly continuous.
For any pef2 and any €>0, there exists a neighbourhood V, of e
such that o€V, implies ||U(c){,—&,||<e?; then for any geV.p, we
can write ¢ =op (c€V,) and consequently {, = U(p,,)¢ = U(0)ls;
hence ¢€V.,p implies

“cq—'Cp” = HU(O')CP - CP”<€-

By the definition of the mapping p—¢,, it is clear that p
corresponds to ¢ and that ||| =|Il| = 1/ess Sup |@da)| for any
any pef2. Thus {9, U(s), ¢} satisfies all CO"ldlth"IS in Definition
1;—Theorem 3 has been proved.

6) See Theorem 3 in [5].
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Corollary. Ewery p. d. function on 22 coincides with a continuous
one almost everywhere in £2°.

Denote by Ej the totality of functions 2(p, q) on £ of the form
2(p, q) = 2(p)x(q) ; w€L (L), and E—the real closed linear envelope
of E, with respect to the norm || - || in LY£?. Then E is a real
Banach space and, as will easily be proved, P is a weakly closed
subset of the real conjugate space E* of E. Then, by the above
Corollary, we can assume that every feP is continuous and [f(p, q)|
Z £ lle = Aps,.16) (by Corollary of Definition 38).

Now Py = {f; feP, ||flle <1} is a bounded, convex and weakly
closed subset of E*. Hence accordiug to the theorem by M. Krein
and D. Milman (for example, see [4] §18), every feP, is weakly
approximated by convex combinations of extreme ones, where an ex-
treme point means such a point of P, that is not an inner point of the
segment combining any pair of two points of Py. It is easy to see
that every extreme feP, is of norm one, except the zero element.

We establish in Theorems 4 and 5 the correspondence between
irreducible u-representations and extreme p. d. functions.

Theorem 4. If {9, U(s), £} ts an trreducible wu-representation
and ||| =1, then f(p,q) = U@y, Ulp,)L) is an extreme p. d.
Sunction.

Proof. Suppose that

A, @) = fi(p, @) +1p, Q) Ji, 2 €Po;

then @{a) = f(apo, ) = fi(oDo, Do) +feloDo, Do) = @y, (@) + @1, (o).

Since {9, Uls), {} is the u-representation of G corresponding to ¢,
in the sence of §4 of [5] (see the proof of Theorem 3 in the present
paper) and is irreducible, we can write by Theorem 4 of [5] that

Pl0) = dpfo), pule) = 1—Dpfo); 0<a<1
(see also Lemma 3). Hence

filp, @) = (v, 9), filp, @) = A=Df(p, g); 021, q.e.d.

Theorem 5. If {9, Ulo), ¢} (||L|] = 1) is a cyclic u-representation
and f(p, @) = (U(p,)C, U(p,)C) is an extreme p. d. function in Pe, then
{9, U(o), £} is irreducible.

Proof. If there exists a projection P in § which commutes
with every U(s), then
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fo, @) = (Ulpa)C, Ulp,)0)
= (Ulp,)PC, Ulp,)PL)+Ulp)I—P)C, Ulp)I—P)X).

and fi(p, @) = (U(p)FPE, Ulp)PL) and fip, q) = Ulp)U—P), Ulp,)
(I—P){) are also p.d. functions. Since f(p, q) is extreme, it follows
that

(PUPE, Up)e) = (Up)PE, Ulp)PL) = A(U(p,)E, Ulp)f); and
since {U(p,){; pe @2} spans §, we have P =iI; hence 2=0 or 1,
as P is a projection, q.e.d.

Definition 4. A function feP is called elementary, if the corres-
ponding u-representation is irreducible and ||f|l.. = 1.

Then the following theorem is evident by Theorem 5 and the
theorem by M. Krein and D. Milman:

Theorem 6. Every f(p,q)€ Py is approximated weakly (in E*) by
convex combinations of elementary p.d. functions.

§3. The weak convergence and the uniform convergence of p.d.
functions. In this paragraph, we ghall show the equivalence of the
two convergence in the set Py = {f; feP, ||f|le=f(Do, vo) =1}, i.e.
the equivalence of weak convergence in E* and the uniform con-
vergence on any compact subset of £2 Concerning the set I7; of
p. d. functions @(s) on G such that ¢(e) = 1, the equivalence of the
weak convergence in LYG)* and the uniform convergence on any
compact subset of G is already established (for example, see [6]),
and @) = f(opo, Do) belongs to /I if and only if feP;. To the
purpose of this paragraph, therefore, it is sufficient to show the
following two lemmas.

Lemma 4. It is necessary and sufficient for f(p, q) € P to converge
to fo(v, Q)€ P weakly in E*, that ¢/s) converges to ¢,(c) weakly in
LY(G)*.

Proof. We define &-5(c), £*(c)(&, n€ L{G)) and the approximate
identity {e.(¢)} of L}(G) asin [56]°. Then by the properties

li:nnea*'ﬁ——flh =0 (|-)]; denote the norm in LY(Q)),

dn*e€ = E+n)*-E+N—(E—n)*-(E—n)
+i(E+1in)* - (E+in)—i(E—in)*-(6—1in)

7 &eqio) = saé(r)ﬂ(r-1a)dr; &* () = &(e—1)4(c), where 4(¢) is the density of right-
invariant Haar measure with respect to left-invariant Haar measure #; ea(s) = Cy,
(6)/1(Vs), where Cv,(0) denotes the characteristic function of V.
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and
[o(o)e* 8o = {{p(r10)e(o)Er) dodr

for &, ne LY((), the condition that ¢(z) converges to gi(s) weakly in
ING)*, is equivalent with the following one: for any £eLYG),
{(p(r10)8()E)dodr converges to {{o(r10)8(0)E()dodr.  Hence
this lemma is clear from Lemmas 2 and 3 (see (1,7) and 1,8)).

Lemma 5. It is necessary and sufficient for h(p, q)€J to converge
to ho(p, @) €J uniformly on any compact subset of 22, that ¢p,(c) con-
verges to ¢ (o) uniformly on any compact subset of G (For the later
application we show this lemma for functions e J(2 P) instead of P).

Proof. i) Suppose that heJ converge to hy€J uniformly on any
compact subset of £2. Then for any compact set KC G, the set
F={opy; ceK}TQ2——and consequently the set F= {p, o) ;
peF}C 2% is compact; hence, if |A(p, @)—hop, ¢)| <€ on F for
€ >0, then

| @i(a)—@ry(0) | = | A(apo, Do) —Pho(aDo, Do) |< € for any o€ K.

ii) Conversely, suppose that @, converge to @,, (A, hoeJ) uniformly
on any compact subset of G. For any compact set F'C 2%, there exist
compact sets Fy, F> < 2 such that F S F,x F)(C ) ; since H is com-
pact, the sets

K, = \VH, and K, = \/H,
pEFy 7 Fy
are compact, and consequently K, 'K, also is compact. Then since
{p, @) € F implies p,'p,€ Ky 'K, it follows that |@u(o) —@s(0)| <€ on
K,7'K, implies

lk(p7 Q)"hb(p’ Q)I = ‘Ph(Pp-.‘lpp)_q’ﬁo(Pq_lppl < ¢ for any {p, > EIA'_',

q.e.d.
Thus we obtain the following

Theorem 7. In order that feP, converge to fo€ Py uniformly on
any compact subset of 2%, it is necessary and sufficient that f converges
to fo wenkly in E*.

§4. Theorems of approximation. By Theorems 6 and 7, it is
immediately obtained that

Theorem 8. Every v.d. function® on 22 is approximated, uni-

8) In this paragraph too, we consider only continuous p. d. funetions.
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formly on any compact subset of (2, by linear combinations with
positive coefficients of elementary p. d. functions.

We shall denote by I’ the totality of functions on G which are
constant on every coset H,(€¢ G/H) (i. e. every o(o)€l’ is considered as
a function on G/H). Then,

Lemma 6. For any p.d. function” @(c)el’, there exists a p.d.
function f(p, q) on 2* such that ¢(c) = @fa) =f(opo Po).

Proof. There exists a cyclic u-representation {9, U(s), {} of
the group G (see §§ 38 and 4 of [5]) such that ¢(s) = (U(0)¢, {). Since
plo)el, (U, §) = plr) == ple) = (¢, {) for any € H; hence
(UE)X—¢, UrE—Q) =0 (from || U)X = |IC]]), i.e. UEE={C.
Therefore we can show, as in the proof of Theorem 3, that {9, U(s),{}
is a u-representation of {2, G, po}. Then

fo, @) = U, UP))=(Cs o)

is a p.d. function on £2 (Theorem 1), and

@(0) = (U(0)¢, &) = (ory» &) = flom0, Do), q.€.d.

Theorem 9. Every invariant continuous function on 2* is approxi-
mated, uniformly on any compact subset of 22, by linear combinations
of elementary p. d. functions.

Proof. For any invariant continuous function 4(p, ¢), the function
@i(o) = h(opo, p) is approximated by linear combinations of p.d.
functions on G, uniformly on any compact subset of G (see [3] or
[4]) : for any compact set KT G and any & >0, there exists a linear
combination y(c) of p.d. functions on G such that | g.(p)—y(p)l < ¢
for pe HKH(HKH is compact as well as H and K). Then since
@i(P) = h(ppo, Do) = h(aPo, T00) = @a(r7'po) for any o, v€ H, we have

1) |@a(p)— || ,a (= po)dodr |

§sS,,zlq)»(-r"‘pa)——\[r(r“’pa)ldad—r for any peK.

On the other hand, for any p.d. function ¢(p) on G, @i(p) =
SS 2®(r7po)dodr is a p.d. function belonging to I"; and by Lemma 6,
o1(p) = flppo, m) for a certain feP. Hence the function n(p) =
SS a¥(r7lpo)dodr (in the left side of (4,1)) is expressed by

9) We can assume that every p.d. function on G is continuous; see [5] § 4.
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4,2) Yi(P) = Sagre) = Nadfilom, )

(a;: complex number, f;€P). From (4,1), (4,2) and Lemma 5 (§ 3),
we can see that A(p, q) is approximated by linear combinations of
p. d. functions on 22 uniformly on any compact subset of £2; and
this theorem becomes clear by Theorem 8.

Theorem 10. i) Let p=Fq be two points of 2; then there exists
an irredusible u-representation {9, U(oc), {} such that {,==¢,.

ii) If = is an element of G different from e, then there exists an
irreducible u-representation {9, U(s), ¢} such that U(r) =+ 1.

Proof. i) Since H, and H, are compact as well as H and since
H,N\ H, is empty (from p==q), there exists a neighbourhood V, of
e such that H,V,V;'H N\ H, is empty. Let &(p) be the characteristic
function of V,, then

Fio,t) = | dp | &P p)do| & (i p)dr

is a p.d. function on 22 (Lemma 1), and f(p, p) ==0 = f{(q, p) (f(p, P)==0
is clear; if f(q, p)==0, then o7'p;peV, and 'T_IP;IPG V. for some o,
r€Hand pe @, hence p,€pV;1r C 0V, Vi« S H,V, V' H, consequently
H,V,V;*HN H, is not empty — contradiction). Hence by Theorem
8, there exists an elementary p.d. function fy(s, t) such that fi(p, p)==
folg, p).

Suppose that ¢, = ¢, for every irreducible u-representation, then
for every elementary p.d. function fi(s, t), by the results of §2, we
have

filp, p) = (&, &) = (€, &) = fi(g, p),

which is a contradiction.

ii) From r=e, there exists a point pe® such that ~p==p,
and by i), there exists an irreducible u-representation {9, U(o), {}
such that {.,==¢{,, hence

U)r=Cn==E,,
namely U(r)==1, q.e.d.

Appendix.

If we assume, in the results of this paper, that ¢ is — and
consequently £ also is—— compact, we obtain the results of [1].
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The method is as follows:
I) Let {9, U(o), £} be an arbitrary u-representation of {2, G, po}
and let the continuous function
&(p) = (§, U(pn)0)
on 2 correspond to the element £€$. Then we can prove that
(U(o)é)(p) = &E(c~'p) and that, if {9, U(o), ¢} is irreducible, there
exists a 4> 0 such that

e, n) = (e@mp)dp for any &, 7¢9,
and $ is finite-dimensional, and let {@;, ----, @.; be a complete
orthonormal system, then & = Sa;9:(€$) implies

£(p) = Xy (p)lo)-

For any u-representation {9, Uls), {}, the corresponding p.d.
function f\p, @) = (U(p,)¢, Ulp,)l) is expressed by the seriese (with
positive coefficients) of elementary p.d. functions (Cf. [4] §24,
Theorem 16 (4)), and {9, Ulo), ¢} is decomposable into the direct
sum of countable number of irreducible u-representations. Hence
every £(p) (£€9) is expressed by

@ JOES WO

where every {p, .-+, o0} is a complete orthonormal system of
$H in the irreducible u-representation {H™, U™(c¢), £} and the
series of the right side of (1) converges absolutely and uniformly
on 2.

II) Let R be the totality of linear combinations of the functions
@M(p) (defined above) and their uniform limit on 2. We shall show
that R is a ring; to this purpose, it is sufficient to prove that the
product of two functions @ (p) and @{”(p) also belongs to R, but
it will easily be seen by Theorem 13 of [4], Lemma 3 in the present
paper and the above equality (1). ‘

It is evident that R contains the function gy(p)=1 and that
¥(p)€ R implies y(p)e B. For any two points p, g€ 2, there exists
a function ¥(s)€ R such that y(p) == yr(q) — this fact is proved from
the existence of sufficiently many irreducible u-representations (see
Theorem 10 (i)J.

10) The system {¢(p), ...., ¢a(p)} spans a primitive harmonic set defined in [1].
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III) Thus, by the well known theorem by I. Gelfand and G.
éilov, the ring R is the totality of all continuous functions on the
compact space 2; i.e. an arbitrary continuous function on £ s
approximated uniformly by linear combinations of members of pri-
mitive harmonic sets on 2.

LITERATURE.

(1) H. Weyl: Harmonics on homogeneous manifolds, Ann. of Math. 35, No. 3
(1934) pp. 486—499.

@ E. Cartan; Sur la détermination d’un systém orthogonal complet dans un espace
de Riemann symmétrique clos, Rend. Cirec. mat. Palermo, 53 (1929) pp. 217—
252.

(3) I. Gelfand and D. Raikov : Irreducible unitary representations of locally compact
groups [in Russian], Mat. Sbornik, 13 (1943) pp. 301—3819.

(4) R. Godement: Les fonctions de type positif et la theorie des groupes, Trans.
Amer. Math. Soc. 63, No. 1 (1948) pp. 1—84.

(5) H. Yoshizawa: Unitary representations of locally compact groups, Osaka Math.
Journ. 1, No. 1 (1949) pp. 81—89.

(6) H. Yoshizawa; On some types of convergence of positive definite functions,
ibid. pp. 90—-94.

(7) A. Weil: Sur les espace structure uniforme et sur la topologie générale, Act.
Sci. Ind. 551 (1938).

(8) A. Weil: L’intégration dans les groupes topologique et ses applications, Act.
Sei. Ind. 869 (1940).

Mathematical Institute, Nagoya University, Nagoya.




