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On the Summability (C, 1) of the Fourier Series.
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Mathematical Institute, Tohoku University.
(Comm. by K. KuNuGi, M.J.A., July 12, 1950.)

1. Let f(x) be an L-integrable and periodic function with period
2w. Concerning the summability (C, 1) of the Fourier series of f(x),
Hahn? has proved the following theorem.

Theorem A. If

(1) [[p@wau=0t ¢>o),
where <p(m,u)=é—{fx+u)+f(w—u)~—2f(x)},

then the Fourier series of f(x) is summable (C,1+8)(8>0), but not
necessary summable (C, 1) .

Prasad? has replaced (1) by the condition that
(2) j;fp(x, ) ut du

exists by the Cauchy’s sense.

On the other hand Hsiang® has recently proved the following
theorem :

Theorem B. If for any 7 >0,
(3) j; (2, u) = dy

exists by the Cauchy’s sense, then the Fourier series of f(x) is summable
(C, 1) but not mecessary summable (¢, (1+m)1—¢) € >0.
Our object of this paper is to prove the following theorems.
Theorem 1. If for any 30,
(4) jo @ (, ) (Jog 1/u)"** w1 du
exists by the Cauchy’s sense, then the Fourier series of f(x) is summable
(C, 1) at the point x.
Theorem 2. If for any s_>0,

(5) j; @ {x, u) (log Lju)y udu

exists by the Cauchy’s sense, then the Fourier series of f (x) 1s summable
(R, log, 1) at the point x .

1) Hahn: Jour. Deuts. Math. Ver., 25 (1916).
2) Prasad: Math. Zeits., 40 (1935).
3) Hsiang: Duke Math. Jour., 13 (1946).
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Theorem 3. For any 0<s<1 there exisis a function f(x)
satisfing the condition (5) but the Fourier series of f(x) is not summable
(C,1) at the point x.

2. Lemma. If for any s >0 the integral (5) exists by the
Cauchy’s sense, then

[\ @ du =0 g 1ty
and ﬂ(p (@) utdu = o ((log 1/5)7) .
Proof. Let us put
0. () = ch(u) (log 1/u)" u~* du

for any €. Then for any 7 >0, there exist t, = #;(7) such that
| @ ()| <n for 0eSt< .

j @ (u) du = j @ (u) ——(Iog 1/uy - (log 1/ )

= @, (t) t(log 1/t)™ — L @ (u) {(log 1/u) "+s (log 1ju) ¢V} du.
Consequently if e<Lt<1?, then
] j @ () du ‘ <nt(log /o) + j 7 {(log 1/u)~"+s (log 1/u)~“*)} du

<nt(log1/t)"+nt{(og1l/t)*+s(log1/ty ¢} <nt(ogljt),

Thus the first half of Lemma is proved. Remaining part is proved
by the similar way.

Let o,(x) be the (C,1)-mean of the Fourier series of f(z) at
the point . Then we have

(6) . (2) — f(x)——j (,)(S‘n(vlzai—tiz)t/2>dt

- E;r—%joq;(w,t)(snzm) dt + 0 (1)

-1 j . (t) sin 2nt/edt + L j“«pl (¢) sin 2t/ dt + 0 (1),
29 Jo ™ JO

where @1 (t) = j; @ (z, u) du .
From Lemma and (4),

o1 (B)/t2 = o ((log 1/¢)**° [t} .
Hence by the Riemann Lebesgue’s theorem the first term of the

right hand side of (6) is 0(1). On the other hand by the same
reason

@1 ()t = o ((og 1/t)**)y = 0(1) (t—>0).

Consequently, by the Fejér’s theorem, the second term of the right
hand side of (6) is o(1).
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Thus Theorem 1 is proved.

For the proof of Theorem 2 it is sufficient to prove the case
s=0. Let R,.(x) be the (R, log, 1)-mean of the Fourier series of
S (x) at the point x.?

R.(2) — f (%) = 1 og_,_ S @) Ly(nt) + 0(1).

Now

n

Tog 7 j @(t) Ly (nt) dt = i&u {[¢. (&) tLy (nt)J —Ka)e (t) Lo (nt) dt}

= i_o—_ {(p () =Ly (nr) — j @, (t) sin nt/nt dt} P-Q,

say, where

D () = 5; pyuldu.
We have

P= o(_’?_) O (Inm) = O (1/log n) = o (1).
log n
Secondly
_ .—21’“ [ 1m t‘ x ] . —
= lL + j} ¥ j | 0O sinntint dt = Qi + Qs + Q.
say. For e<t<t, we have
= H:(p(u)u“‘du|<n

n 1m ‘ -
| < l;é'—;b L nnt/nt dt < p/log n = o (1).
| Q| < o r pint dt < n/log nt (log nt) =7 + o(1).
log n Jim

(@l r O ()t dt = O (Lflog n) = o (1) .
ognJey
That is,

(To® Limtdt=ow)
log
uniformly in €. Thus the theorem is proved.

3. Let {p.} be an increasing sequence of positive integers
and {C.} be a positive sequence, especially ¢; = 0. We define the
functions F(t) and #;(t) in the following manner.

If ¢t is a point of the interval J,= (w/p., m/pi1), let

F(t) = Cp Sin pkt
and @ (t) = F (t)t(log 1/8)~*°,
where 0<s<1.

4) Wang: Tohoku Math. Jour., 40 (1935).
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1°  The condition for which o (£)e L (0, ).
j: Lot () | dt < ,% j 7, i cos pit ¢ (log 1/8)™
+ ¢, sin pr ¢ {(log 1/¢)~° + s (log 1/£)~¢*D} | di
d iR =t 00 7 /p,—1
g;:c,cmj l"’ 1(log 1/¢)~" dt + ,z,:c,,j " {(log 1/t)y + s (log 1/t)-¢*} di
=1 L o= /Py,

2703

g,;:—{ ¢ pr (log pr_1)™* p;fx + ,?3; ¢ {(log pr-)™ + s (log pr_) D} pr_y

(7) S2iam p;" (log piy)™ .

Consequently if the series (7) is convergent then ¢ (f) i8 integrable.
Hence we define @ (¢) by

p(t) = (£)=crprcosp,t-t(log1/t) 3+ c.sinp, t{(log 1/t)~*+s(log 1/t)~ ¢V}

for t<« Ji, p(—t) =@ (t) and @ (2w + t) = p(t) for any t. Since
@ (t) is an integrable and even periodic function with period 2,
we can write

@ (t) ~ ?a.“ cos nt .

Especially a=0, for @(r)=0.

We consider the summability of the Fourier series of ¢ (f) at
= 0, and we prove that it is not summable (C, 1).

2°  The condition for which (5) is satisfied.
[[ 2 (6) tog Lityt dt = L1 (1) Gog L1ty It —1(e) g Ljeye]
+ j o1 (8) {t-2 (log /ey + st=2 (log 1jty~1} dt ,
where if g€y,
g (e) (logl/e)je = F(g) = c.sinp €.
Hence the funection ¢ (f) satisfies the condition (5) if there exists
lim j o1 () 2 (log 1/)" dt ,

and c.=o0().
For any teJ:

[ ot og 110y urat| <

il
1 oo“ 1 0o
g;écipi/ﬁig;gcz .
Consequently if 3] ¢; < o , then @ (f) satified the condition (5).

'nlp,‘-l . {
S c:sin pufudu |

=/p;

3° The condition for which the Fourier series 18 mot summable
C,Datt=0.
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2 (3,,(0) = £(0) = | m (®) 2 sinpetdt + 0 ()
/P o/ 1 £
j g j s +o(l) =8 +S+ Seto(l),
=[Py, /Py,_y
say.

00 7 P
Si=31 [ ecsin it (og 10yt dt

=3 1—"2«5 {08 (pi—pr)t + cos (p;+ pi) th(log 1/t) ="/t di.

S p,(log p,)~* 1 + 1

p. (log p) (pi_pk P

=S &GP D = 43 e (log p)-
z=§+:12(logpi)* pE—pi i=§+x (log ),
&j“/pk—l 1—cos2p.t

2 Jaip, t (log 1/t

= -2 [(log pe-1)t™* — (log po™"] + ex (log pu) ",

Sg':-'

iss'g.Azi 2 (log p)"-

Hence if Sy =0(1), Sz — o, and S; = O(1) for k — « , the Fourier
series of @ () is not summable (C,1) at t=0. Or

2alogp)™ o,
¢ [(log pr_y)'~* — (log pr)'~*] = o (k — ).
=9 and =277, 0<e<1,

Let Dr = P
then all conditions 1°-3° are satisfied and then Theoren 38 is

proved.



