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111. On Spaces with a Complete Structure.

By Taira SHIROTA.
(Comm. by K. KUNUGI, M.J.A., Nov. 12, 1951.)

The purpose of this note is to study the problem: Is it true
that every completely regular space with a complete structure is
homeomorphic to a closed subset of a Cartesian product of the
space of real numbers with its usual topology ?

Concerning the above problem, under a restriction with respect
to cardinal numbers of the spaces, an affirmative answer will be
given in this note.

1. Definition 1. ’) Let us call the structure of a completely
regular space X with the uniformity made up of all countable
normal coverings of the space X the e-structure of X and denote
by eX. Moreover we say the space with the complete e-structure
to be e-complete and let us call a cardinal number m to be e-complete
if the discrete space with the potency m is e-complete.

Definition 2.) Let X be a completely regular space and let
C(X, R) be the set of all real-valued continuous tunctions with
domain X. Further-more let f be a function in C(A; R). Then
the set of points in X for which f vanishes is said to be a Z-set
and is denoted by Z(f). Finally let Z(X) be the family of all Z-
sets of X. Then a subfamily [, of the family Z(X) is said to be
a CZ-maximal family of X if ?I enjoys the following four conditions"

a) l is not an empty family,
b) I does not contain a void set,
c) A never contains countable subfamilies with total intersec-

tion void, and
d) is maximal with respect to the properties a), b) and c).

2. Lemma 1. Every CZ-maxima family of a completely
vegular space X is a Cauchy family of the e-structure eX. For any
Cauchy family of the e-structure eX there exists a Cauchy family
such that they are equivalent.

Lemma 22) A completdy regular space is homeomorphic to a
closed subset of a Cartesian product of the reas if and only if for
any CZ-maximal family the tota intersection is not void.
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From Lemma 1 and 2 we have
Theorem 1. A completely regular space X is e-complete if and

only if it is h meomorphic to a closed subset of a Cartesian product
of the reals

3. Cardinal numbers and discrete spaces.

Lemma 3. If two cardinal numbers m and n are e-complete, then
n’ is a[so e-complete. If every cardina number less than a given
cardinalnumber m is e-complete and if m is represented by the sum

aeA
m where the cardinal number A of A is less than m and m m,
then m is also e-complete.

The above lemma can be proved by the method used by Ulam.4)

4. Lemma . Let { In 1, 2, 3, } be a normal sequence
of open coverings of a completely regular space X and let
I--{UI A}. Then there exists a family {EIB, & m=l, 2, ..}
of subsets of X satisfying the following conditions:

i) {E B B & m 1, 2, 3, } is a closed covering of X,
ii) E(’o =E for B :4: B(.

iii) E, is not void,
iv) every element of 1+ does not intersect

{EI B,} at the same time,
and

where B is a subset of the set A.
This lemma is due to H. A. Stone.’)

Lemma 5. Let X and Y be two completely regular spaces and
let be a continuous mapping of X into Y. Then if i is a CZ-
maximal family of X, the subfamily of Z(Y):

I {Z Z D (Z) for some Z e I & ZfeZ(Y)}

is a CZ-maximal family of Y.
Lemma 6. Let I be a CZ-ma$imal family of a completely

regular space X and let f be a function in C(X, R) which is
not constant and not negative such that Fo--Z(f). Then if
F --{x If(x) a} where a ) O, the subfamily of Z(F)

l’ {Z(g) g e C(F R) & Z(g) Z r Fo 4 0 for some Z

is a CZ-maximal family of F.

two element of
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By virtue of Lemmas 4, 5 and 6 we have

Theorem 2. Let X be a completely regular space whose cardinal
number lXI is e-comple’e. Then if there exists a complete structure
over X, X is e-complete.

Proof. Suppose that X admits a complete structure gX with
the uniformity {IID}. Let / be a CZ-maximal family of X.
Moreover let 11 {UIA} be an arbitrary normal covering in
{l D}. Then there exists a normal sequence {1,,I n 1, 2, 3, }
such that

According to Lemma 4 there exists a closed covering of
X {EIBA & m--1,2,3,...} such that it satisfies of the
conditions of this lemma. Let F E,. Then {F m 1, 2,

3, ...} is a closed covering. Since { admits the condition c) of
1, there exists a set F,e {F} such that F is compatible with. Let f be a continuous function such that f(x) 0 for x e F,, and

f(x) 2 for x S(F,, +) moreover, let Zo {x If(x) 0} and
let Z {x]Ax)1}. Then since Zo F, Zo and by Lemma
6, the family

’ {Z(g) ge C(Z R) & Z(g) D ZZo 0 for some Z

,is a CZ-maximal family of Z.
Now, it is easy to show that Z Z,,, where S(E,,,

D Z, D E,,. Hence for two different indices a,, and B,, belonging

Hence the mapping of Z, onto the discrete space B,, such that if
x e Z, (x)= B,,, is continuous, and therefore by mma 5 the
family of subsets of

2={C]B,,C(Z) for some Ze

is a CZ-maximal family of B,,. Since ]B,,[[AI]X! and since
IX] is e-complete, B, is e-complete. Hence there exists a
such that {B,,} is the total intersection of 2, i.e., B,e(Z) for
any Z 2. Then it is easy to see that for any Ze ZZO,
hence Z,, e 2. Moreover Z, S(E,, +) S(E ,,+)
by the condition v) of Lemma 5. Thus we see that for any
le{,]D} there exists a Ze2 such that Z.Ue. This fact
is equivalent to the statement that 2 is a Cauchy family of gX.

By the assumption of our theorem gX is complete, hence there
exists a limit point x of the Cauchy family 2 of gX, i.e., x is the



516 T. SHIROTA. [Vol. 27,

total intersection o.f . Since I is an arbitrary CZ-maximal family,
X is e-complete by Lemma 1. Thus the proof is complete.

From Theorem 2 we have immediately the ollowing

Theorem 3. Let X be a fully normal T-space. Then if lXI
is an e-complete cardinal number, X is e-complete.

For, any ully normal space admits a complete structure%
5. From Theorem 1, Theorem 2 and Lemma 3 we obtain

the ollowing two theorems.
Theorem 4. The following three statements are equivalent"
a) every completely regular space with complete structure is

homeomorphic to a closed subset of a Cartesian product of the reals,
b) every cardinal number is e-complete,
c) every dscrete space admits no measure completely additive

on all subsets, vanishing for every point, assuming only va[ue 0 and
1 and equa to 1 for the whole spacd).

Theorem 5. For spaces X whose cardinal numbers XI are
weakly accessible from )o s) in A. Tarski’s sense, i.e., IX[

_
2,

[ or __2 etc., the following conditions are equivalent"
a) X is homeomorphic to a closed subset of a Cartesian product

of the reas,
b) there exists a complete structure over X,
c) X is e-complete.
The other properties of the e-complete space and the properties

of C(X, R) as well as the full proofs of the above theorems will be
given in the Osaka Mathematical Journal.
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