No. 8]

95. Note on the Fibering of an (n−1)-connected Space by Spheres

By Hidekazu WADA

Mathematical Institute, Tôhoku University (Comm. by Z. SUETUNA, M.J.A., Oct. 12, 1953)

- § 1. The main object of this note is to study an (n-1)-connected space, whose fibering by spheres is impossible. This is somewhat concerned with a problem of D. Montgomery and H. Samelson¹⁾, on the fibering of a Euclidean space by compact fibres.
- § 2. Let X be an (n-1)-connected space (n>2); namely it satisfies the conditions $\pi_i(X)=0$ $(i=0,1,\ldots,n-1)$. We shall also assume that X is a fibre bundle³⁾, whose fibre is a (k-1)-sphere S^{k-1} (n>k>1); and let us denote whose base space as Y. Now, we shall denote following J. H. C. Whitehead⁴⁾, with ΔY the minimum dimensionality of all CW-complexes which dominate Y.

If $p: X \to Y$ is the projection, we obtain an exact sequence of the homotopy groups

where \mathfrak{d} is the boundary operator, p_* is the isomorphism induced by p, and S_0^{k-1} is a fixed fibre oriented suitably. From the exactness of (1) and from the assumption on X, we obtain the following isomorphism onto:

$$\theta p_*^{-1}: \pi_i(Y) \to \pi_{i-1}(S_0^{k-1}) \quad (2 \le i \le n-1).$$

Next, let E^k be an *n*-dimensional oriented cell, and S^{k-1} be the boundary sphere of E^k oriented coherently with E^k ; let $f: S^{k-1} \to S_0^{k-1}$ be a homeomorphism of degree +1. Let $g: (E^k, S^{k-1}) \to (S^k, s_0)$ be a mapping onto a k-dimensional oriented sphere S^k such that $g \mid \text{Int } E^k$ is a homeomorphism of degree +1, and $g(S^{k-1}) = s_0$, where s_0 is a fixed point on S^k . From these mappings and from (1), we obtain the following diagramm:

(2)
$$\pi_{i}(S^{k}) \stackrel{g_{*}}{\longleftarrow} \pi_{i}(E^{k}, S^{k-1}) \stackrel{\partial'}{\longrightarrow} \pi_{i-1}(S^{k-1}) \\ \downarrow f_{*} \\ \pi_{i}(Y) \stackrel{p_{*}}{\longleftarrow} \pi_{i}(X, S_{0}^{k-1}) \stackrel{\partial}{\longrightarrow} \pi_{i-1}(S_{0}^{k-1}).$$

Here, ϑ' is the boundary operator, which is an isomorphism onto for all $i \ge 2$; f_* and g_* are homomorphisms induced by f and g

respectively, and f_* is an isomorphism onto for all $i \ge 2$. On the other hand, $g_* \ \partial^{i-1}$ is same as Freudenthal's Einhängung⁶⁾ and is an isomorphism onto for all $2 \le i \le m$, where m is an integer such that

(3)
$$m = \begin{cases} 2k-2 & \text{if } \pi_{2k-1}(S^k) \text{ has an element whose Hopf's invariant is 1,} \\ 2k-3 & \text{otherwise.} \end{cases}$$

Next, we shall define a mapping $h:(E^k,S^{k-1})\to (X,S^{k-1}_0)$ as follows: let $h\mid S^{k-1}=f$, and h shall be an arbitrary extension of f elsewhere, whose existence can be seen from $\pi_{k-1}(X)=0$. Then, h induces the following homomorphism:

$$h_*: \pi_i(E^k, S^{k-1}) \to \pi_i(X, S_0^{k-1})$$
.

From the construction and from (2), we can see that h_* is a homomorphism such that $\partial h_* = f_* \partial'$. So that we can write as $h_* = \partial^{-1} f_* \partial'$ when $2 \le i \le n-1$. Now, we shall define a mapping $\mu: S^k \to Y$ as follows:

$$\mu \ (s) = \left\{ egin{array}{ll} phg^{-1}(s) & (s \in S^{tk} - s_0) \\ p \ (S_0^{k-1}) & (s = s_0) \ . \end{array}
ight.$$

Then, μ is easily seen to be a continuous mapping, and from the construction, it induces the following isomorphisms onto:

$$\mu_* = p_* h_* g_*^{-1} = p_* \, \partial^{-1} f_* \, \partial' \, g_*^{-1} : \, \pi_i(S^k) \to \pi_i(Y) \, (2 \le i \le N) \,,$$

$$(4) \qquad \qquad \mu_* : \, \pi_1(S^k) \to \pi_1(Y) \,,$$

$$N = \min \, (n-1, m) \,.$$

In fact, we may only see that $\pi_1(Y)=0$, as we have seen the other cases. But this can be proved by the covering homotopy theorem and by the simple connectedness of X, considering a closed curve in Y to be a homotopy of a mapping from a point.

From (4), we obtain the following result using the J. H. C. Whitehead's theorem⁷:

Proposition 1. If $\Delta Y \leq N$, $\mu: S^k \to Y$ is a homotopy equivalence.

In fact, because (4) is an isomorphism onto, we may only see $k \leq N$, as $\Delta S^k = k$. From the assumption, $k \leq n-1$ is evident. When k=2, as $\pi_3(S^2)$ has an element whose Hopf's invariant is 1, we see m=2k-2=k from (3). Also, when $k\geq 3$, $m\geq 2k-3\geq k$ follows, which completes the proof.

§ 3. The aim of this section is the following result:

Proposition 2. The fibering of X by S^{k-1} such that $\Delta Y \leq N$ is possible only when 2k > n.

In fact, let $\mu': Y \to S^k$ be a homotopy inverse of μ , namely such a mapping that satisfies the conditions $\mu \mu' \simeq 1$, $\mu' \mu \simeq 1$. Next, let M^{2k-1} be an S^{k-1} -bundle over S^k induced by μ from X^{8} .

Then we obtain easily the following diagramm with the commutativity $\mu q = p\overline{\mu}$:

$$M^{2k-1} \stackrel{\overline{\mu}}{\Rightarrow} X$$
 $q \downarrow \qquad \qquad \downarrow p$
 $S^k \stackrel{\mu}{\longleftrightarrow} Y$,

where $\overline{\mu}$ is the induced map, and q is the projection for M^{2k-1} . If $2k \leq n$, from $2k-1 \leq n-1$ and from the assumption on X, we obtain easily $\overline{\mu} \simeq 0$. Therefore, we get

$$q \simeq \mu' \mu q = \mu' p \overline{\mu} \simeq 0.$$

So that, q is algebraically inessential, and the Hopf's invariant H(q) of q can be defined to be H(q)=0 from (5). On the other hand, as $M^{2^{k-1}}$ is a sphere bundle over S^k , it must satisfy $H(q)=\pm 1$; so that, such a fibering cannot exist, which completes the proof.

As S^{2k-1} is an S^{k-1} -bundle over S^k for k=2,4,8,10 the condition 2k > n cannot be taken better.

As a corollary of Proposition 2, we obtain the following result:

Proposition 3. There does not exist a fibering of an n-dimensional Euclidean space, or an n-cell (for an arbitrary n for both cases), or n-sphere $(n \ge 2k)$ by (k-1)-spheres such that $\Delta Y \le m$; where m is given by (3).

References

- 1) D. Montgomery and H. Samelson: Fiberings with singularities, Duke Math. Journ., 13, 51-56 (1946).
 - 2) $\pi_0(X)=0$ means that X is arcwise connected.
- 3) As for definition of fibre bundles, cf. N.E. Steenrod: The topology of fibre bundles, Princeton, 1951. We shall assume the covering homotopy theorem for X, l.c. p. 54.
- 4) J.H.C. Whitehead: Combinatorial homotopy. I, Bull. Amer. Math. Soc., 55, 213-245 (1949).
- 5) We say that P dominates Y if and only if there exist mappings $\lambda: Y \to P$, $\lambda': P \to Y$ such that $\lambda'\lambda \simeq 1$, where 1 means the identity of Y.
- 6) H. Freudenthal: Über die Klassen der Sphärenabbildungen. I, Comp. Math., 5, 297-314 (1937-'38).
 - 7) Cf. 4), Theorem 1.
 - 8) Cf. 3), p. 47.
- 9) Cf. for instance the author's: On the structure of a sphere bundle, Tôhoku Math. J., 2nd Ser., 3, 136-139 (1951). That M^{2k-1} is simply connected, and consequently that it is orientable when k > 2 can be proved using the covering homotopy theorem from the simple connectedness of S^{k-1} and of S^k . If it is not orientable when k=2, the conclusion $H(q) \equiv 1 \pmod{2}$ can be proved similarly.
- 10) H. Hopf: Über die Abbildung von Sphären auf Sphären niedriger Dimension, Fund. Math., 25, 427-440 (1935).