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1. The main object of this note is to study an (n-1)-
connected space, whose fibering by spheres is impossible. This is
somewhat concerned with a problem of D. Montgomery and H.
Samelson’, on the fibering of a Euclidean space by compact fibres.

2. Let X be an (n-1)-connected space (n2); namely it
satisfies the conditions r(X) 0 (i 0, 1,..., n- 1).’) W’e shall
also assume that X is a fibre bundle ), whose fibre is a (k-1)-
sphere S- (n>kl); and let us denote whose base space as Y.
Now, we shall denote following J. H. C. Whitehead ), with zlY the
minimum dimensionality of all CW-complexes which dominate Y.)

If p" X- Y is the projection, we obtain an exact sequence of
the homotopy groups

7T’,,(X’) ,’/7-,(X, Sok-l) -- 7F,I._l (Sok-l) ’77"t-1 (X)
(1) I p*

r(Y),
where is the boundary operator, /9. is the isomorphism induced
by p, and S- is a fixed fibre oriented suitably. From the ex-
actness of (1) and from the assumption on X, we obtain the fol-
lowing isomorphism onto"

p;" r,(Y) - r,_ (S-) (2 i n- 1).

Next, let E b an n-dimensional oriented cell, and S*- be
the boundary sphere of E oriented coherently with E; let f" S--
S- be a homeomorphism of degree + 1. Let g" (E, S-) --> (S, So)
be a mapping onto a k-dimensional oriented sphere S such that
glint E is a homeomorphism of degree + 1, and g (S’-)=s0, where
so is a fixed point on S. From these mappings and from (1), we
obtain the following diagramm"

g*
S,-)

a
-, (s ,---. ., (E, .,_. (S,,-)

(2) If,
P* -:),rr’, (Y) ---- -, (X, S ----- r,_ (S’-

Here, a’ is the boundary operator, which is an isomorphism onto
for all i2; f, and g, are homornorphisms induced by f and g
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respgctively, and f. is an isomorphism onto for all i___2. On the
other hand, g. - is same as Freudenthal’s Einhingung and is
an isomorphism onto for all 2<:im, where m is an integer
such that

2k-2 if r_(S) has an element whose Hopf’s
(8) m invariant is 1,

2/c 3 otherwise.

Next, we shall define a mapping h’(E,S-).-->(X,So-) as
follows" let hiS- =f, and h shall be an arbitrary extension of
f elsewhere, whose existence can be seen from r_(X)=0. Then,
h induces the following homomorphism"

h, (E, S-) - (X, So-).From the construction and from (2), we can see that h. is a
homomorphism such that Oh. =f. ’. So that we can write as
h. ---,@-f. ’ when 2 i_n- 1. Now, we shall define a mapping
/" S--> Y as follows"

(s) I phg- (s) (s e S- 8o)

p (So-) (s=s0).
Then, t is easily seen to be a continuous mapping, and from the
construction, it induces the following isomorphisms onto". p.h.g; p. O-f. gT r (S) ---> r (Y) (2

___
i N),

( 4 ) ,. (s) - (Y),
N rain (n-1, m).

In fact, we may only see that r(Y)=0, as we have seen the
other cases. But this can be proved by the covering homotopy
theorem and by the simple connectedness of X, considering a
closed curve in Y to be a homotopy of a mapping from a point.

From (4), we obtain the following result using the J.H.C.
Whitehead’s theorem)"

Proposition 1. If IYN, " S --> Y is a homotopy equivalence.
In fact, because (4) is an isomorphism onto, we may only see

k_N, as S=k. From the assumption, kn-1 is evident.
When k=2, .as v(S) has an element whose Hopf’s invariant is 1,
we see m=2k- 2----k from (3). Also, when ]c__ 3, m

__
2k- 3

__
k

follows, which completes the proof.
3. The aim of this section is the following result"

Proposition 2. The fibering of X by S- such that IYN is
possible only when 2k n.

In fac, let " Y-S be a homotopy inverse of , namely
such a mapping that satisfies the conditions -- 1, -- 1.
Next, let M- be an S--bundle over S induced by from X.
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Then we obtain easily the following diagramm with the com.
mutativity tq

M- X

S--y

where is the induced map, and q is the projection for M=-.
If 2/ n, from 2,-1 <:: n-1 and from the assumption on X, we
obtain easily 0. Therefore, we get

( 5 ) q //,q tp 0.

So that, q is algebraically inessential, and the Hopf’s invariant
H(q) of q can be defined to be H(q)=0 from (5). On the other
hand, as M’- is a sphere bundle over S, it must satisfy H(q)=
1; ) so that, such a fibering cannot exist, which completes the
proof.

As S- is an S--bundle over S for k=2, 4, 8,) the condition
2,n cannot be taken better.

As a corollary of Proposition 2, we obtain the following result"
Proposition 3. There does not exist a fibering of an n-dimen-

sional Euclidean space, or an n-cell or an arbitrary n for both cases),
or n-sphere (n2k) by (k-1)-spheres such that Ym; where m
is given by (3).
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