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1. G. H. Hardy and J. E. Littlewood [1] proved the following
theorem concerning the convergence of Fourier ‘series at a point.

Theorem HL. If

(1) f ' %(u)}du:o(t /108 -}) (t~0)
and a
(2) [ 140 paw) 1=0) (4>1),

0
then the Fourier series of f(t) converges at t=x.

Recently G. Sunouchi [2] proved the following

Theorem S. If (1) holds and
PPN | gyg (4>1, 4>0),
hryt/A ¢
then the Fourier series of f(t) converges at t=z.

The object of this paper is to prove a convergence theorem
similar to Theorem S, replaced the first condition by the weaker
in order and the second condition by the stronger. More precisely
we prove the following

Theorem 1. Let O<oa<l., If

(38) lim lim sup

k> h>0

(4) put)—plt)=0(1/(10g 1 el ))  @r-0
and
(5) lim t Do) — Pt +/n) ‘dt 0 (>0),

t

then the Fourier series of f(t) converges at t=uw.

As S. Izumi and G. Sunouchi [8] have proved, in the case o>1
the Fourier series of f(f) converges uniformly at {=x without the
second condition.

Theorem 2. Let a>0. If

(6) Pt puth=o(1/(loglog 1)) @:¢~0)

7 >0 (log n)d/

and
(7) lim
>0 ,’wdoglogn)“/n

then the Fourier series of [f(t) converges at t=x.

Ul

Po(t) — ot + /1) ‘ dt=0  (3>0)
¢
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In Theorems 1 and 2, if the conditions (5) and (7) are replaced by
a,=0(e"%"In)  (0<a<l), @,=0("®" " In)  (a>1)
respectively, then the Fourier series converges uniformly at =z,

where a, is the n-th Fourier cosine coefficients of @) (cf. [4]).

2. Proof of Theorem 1. We assume z=0 and f(0)=0, and
further put @,(t)=(t).

=" [To@) S dt+o(1)

2;1;[/4,,/,,4_ ‘/.MsCJogn)“/n—{Ff,, :I+0(1)

0 /n ﬂeﬁ(mg n‘a/n
1

=;{I+J+K] +o(D),

say, where B is the least number >1 such that €*¢™® js an odd
integer. We can see I=o0(1) and

rebClog n) /n (k+1)7/n
J— f (t)_smnt df= Zf + )smnt dt

/n kw/n
g e kr\ sinnt
= — 1y ¢+ ) S0nl g
-~ kEr% (=D n / t+kmin

where p~e”<‘°g”’°‘ By the first mean value theorem for =/n<6=<2w/n,

= (1)
-2 Zé e PO+ Bm/n)

"32 sogz [ # (5 + )= (B 40) 4oy

1 PR2 1 1
=0 = 1 - 1 .
<(log n)* kz-; 2k+1 > O< (log n)* 8 p) o)
For the proof of K=0(1), we divide the integral into two parts such

that
K—[ f f ]¢(t) Sint"t dt=K,+ K,

wp/n
where 5 is a positive number <, then we have easily K,=o(Q),
since ¢(t) is Lebesgue integrable. And

K= f s1n nt simnt o,

we/n

=SS —f =

wp/n m—m/n wp/m—a/n

=_f < 1) sin nt dt+o(1)

n
_1 f {‘p(t> ‘p(t"":/n)}sinntdt
Tp/n
+1 [P e miy {2~ /n}sinntdt+o(1),
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where
n

n PE+T/) gin pe dt=o0(1).
L t(t+m/n)
Thus we have K=o0(1). Therefore the theorem is proved.
3. Proof of Theorem 2. Similarly as in the proof of the pre-
vious theorem, we assume =0, f(0)=0 and further we divide the

integral into three parts such that
5.0="— [ o) " dt+0(1)
Lol

¢
0
_ 1 w/n mebloglogn)® /, o
-1 [ of + [/ ,. + l; N low/”] +o(1)
1 [I+ J+K] +o(1)
m

where B is the least number >1 such that e*d&e™* jg an odd
integer. Similarly as in the proof of Theorem 1, we can prove
that I=o0(1), J=o0(1), and K=o0(1).
4. More generally we can prove the following
Theorem 3. If A(n)—>oo,
N 1 'O
and

lim P(E) =@t +m/n) ‘dtzo (n>0),
n> U aem /n t
then the Fourier series of f(t) converges at t=zw.
The theorem has the significance in the case A(n)=O0(log n) only.
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