74. Note on the Mean Value of $\mathrm{V}(\mathrm{f})$. II

By Saburô Uchiyama
Mathematical Institute, Tokyo Metropolitan University, Tokyo
(Comm. by Z. Suetuna, m.J.A., June 13, 1955)

1. Let $G F(q)$ denote a finite field of order $q=p^{\nu}$. In the following we shall consider polynomials of the form

$$
\begin{equation*}
f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x \quad\left(a_{j} \in G F(q)\right), \tag{1.1}
\end{equation*}
$$

where $1<n<p$, and the number $V(f)$ of distinct values $f(x)$, $x \in G F(q)$. L. Carlitz $[1]^{1)}$ has proved that we have

$$
\begin{equation*}
\sum_{a_{1} \in G H^{\prime}(q)} V(f) \geqq \frac{q^{3}}{2 q-1}>\frac{q^{2}}{2}, \tag{1.2}
\end{equation*}
$$

where the summation is over the coefficient of the first degree term in $f(x)$. It is also known [2] that

$$
\begin{equation*}
\sum_{\text {deg } f=-n} V(f)=\sum_{r=1}^{n}(-1)^{r-1}\binom{q}{r} q^{n-r} \tag{1.3}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{\mathrm{deg} j=n} V(f)=c_{n} q^{n}+O\left(q^{n-1}\right), \tag{1.4}
\end{equation*}
$$

where the summation on the left-hand side of (1.3) or (1.4) is over all polynomials of degree n of the form (1.1) and

$$
\begin{equation*}
c_{n}=1-\frac{1}{2!}+\frac{1}{3!}-\cdots+(-1)^{n-1} \frac{1}{n!} . \tag{1.5}
\end{equation*}
$$

In fact, the sum on the left-hand side of (1.3) is equal to the number of distinct polynomials, of degree n,

$$
f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \quad\left(a_{j} \in G F(q)\right)
$$

having at least one linear polynomial factor in $G F[q, x]$. In this point of view the relation (1.3) is almost obvious.2)
2. The purpose of this note is to prove the following

Theorem. We have

$$
\begin{equation*}
\sum_{(r)} V(f)=q^{-r} \sum_{\operatorname{deg} \mid=n} V(f)+R_{n, r} \quad(1<n<p), \tag{2.1}
\end{equation*}
$$

where the summation on the left-hand side is over the coefficients a_{1}, a_{2}, \ldots, a_{n-r-1} in $f(x)$ and

$$
R_{n, r}=\left\{\begin{array}{cl}
0 & \text { if } r=1 \\
O\left(q^{\theta n}\right) & \text { if } r \geqq 2
\end{array}\right.
$$

with $\theta=1-\frac{1}{r}$. In particular, if $n \geqq r(r+1)$ then

$$
\begin{equation*}
\sum_{(r)} V(f)=c_{n} q^{n-r}+O\left(q^{n-r-1}\right), \tag{2.2}
\end{equation*}
$$

where c_{n} is the number given by (1.5).

[^0]We may prove analogous results to the inequality (2.2), summing over the coefficients $a_{t+1}, a_{t+2}, \ldots, a_{n-r-1}$ with $r+t \geqq 2$.

It is not difficult to see that the relation (2.1) holds for $r=1$: so we shall prove the theorem only for $r \geqq 2$.
3. For $x \in G F(q)$, we define

$$
\begin{equation*}
e(x)=e^{2 \pi i S(x) / p}, \quad S(x)=x+x^{p}+\cdots+x^{p \nu-1} ; \tag{3.1}
\end{equation*}
$$

then it is clear that $e(x+y)=e(x) e(y)$ and

$$
\sum_{x} e(x y)= \begin{cases}q & (y=0), \tag{3.2}\\ 0 & (y \neq 0) .\end{cases}
$$

Given a primary polynomial

$$
M=M(x)=x^{m}+c_{m-1} x^{m-1}+\cdots+c_{1} x+c_{0} \quad\left(c_{j} \in G F(q)\right),
$$

we put $c(M)=-c_{m-1}$ and

$$
M^{(1)}(x)=M(x), \quad M^{(t)}(x)=\prod_{\omega} M\left(\omega x^{1 / k}\right) \quad(1<k<p),
$$

where ω in the product runs over the k th roots of unity in $\operatorname{GF}(q)$. As is easily seen, $M^{(t)}(x)$ is a polynomial of degree m in x, whose coefficients belong to the $G F(q)$.

Put for $1 \leqq k \leqq r, 2 \leqq r<p$,

$$
\chi^{(b)}(M)=\lambda_{\beta}^{(i)}(M)= \begin{cases}1 & (\operatorname{deg} M=0),)^{3)} \\ e\left(\beta c\left(M^{(b)}\right)\right) & (\operatorname{deg} M \geqq 1),\end{cases}
$$

where $\beta \in G F(q)$, and

$$
\lambda(M)=\prod_{k=1}^{r} \lambda^{\left(k^{(b)}\right)}(M) .
$$

Then we have $\lambda(A B)=\lambda(A) \lambda(B)$ for any two primary polynomials A and B in $G F[q, x]$.

Lemma. Let

$$
\begin{aligned}
& A=A(x)=x^{m}+a_{m-1} x^{m-1}+\cdots+a_{0}, \\
& B=B(x)=x^{m}+b_{m-1} x^{m-1}+\cdots+b_{0}
\end{aligned}
$$

be arbitrary primary polynomials in $G F[q, x]$. In order that we have

$$
a_{m-j}=b_{m-j} \text { for } j=1,2, \ldots, r \text {, }
$$

it is necessary and sufficient that

$$
\sum_{\lambda} \bar{\lambda}(A) \lambda(B) \neq 0,
$$

where $\bar{\lambda}$ denotes the conjugate complex of λ.
In fact, this is a particular case of Lemma 1.3 in [3].
If we write

$$
\begin{equation*}
\tau_{j}(\lambda)=\underset{\operatorname{de⿻},}{ } \sum_{M-j=j} \lambda(M), \tag{3.3}
\end{equation*}
$$

then $\tau_{j}(\lambda)=0(j \geqq r)$ for $\lambda \neq \lambda_{0}=\Pi \lambda_{0}^{(k)}$, and

$$
\begin{equation*}
\tau_{j}(\lambda)=O\left(q^{\theta j}\right), \tag{3.4}
\end{equation*}
$$

where $\theta=1-\frac{1}{r} .^{4)}$
3) The functions $\lambda(k)$ are substantially the same ones defined in [3, §1]. The restriction $\lambda^{(k)}(M)=0$ for $M(x) \equiv 0(\bmod x)$, which was imposed there, is inessential. See also [4].
4) Cf. [4].

Now put

$$
C_{n}(\lambda)=\sum_{\operatorname{deg} M=n}^{\prime} \lambda(M),
$$

where, in the summation $\Sigma^{\prime}, M=M(x)$ runs over the distinct primary polynomials $\in G F[q, x]$ of degree n having at least one linear polynomial factor in $G F[q, x]$. Thus, as is noted in $\S 1, C_{n}(\lambda)$ is the sum of

$$
\sum_{k=1}^{n}(-1)^{k-1}\binom{q}{k} q^{n-k}
$$

members $\lambda(M)$, and we can write it as

$$
C_{n}(\lambda)=\sum_{j=1}^{n}(-1)^{j-1} s_{j}\left(\lambda\left(P_{1}\right), \ldots, \lambda\left(P_{q}\right)\right) \tau_{n-j}(\lambda),
$$

where P_{j} 's are the linear primary polynomials in $G F[q, x]$ and $s_{j}\left(x_{1}, \ldots, x_{q}\right)$ is the elementary symmetric function of x_{1}, \ldots, x_{q} of degree j. It is not difficult to show, using (3.4), that

$$
C_{n}(\lambda)=O\left(q^{\theta n}\right) \quad\left(\lambda \neq \lambda_{0}\right) .
$$

Given a set $\left(a_{n-1}, \ldots, a_{n-r}\right)$ of elements of $G F(q)$, we put

$$
f_{0}(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{n-r} x^{n-r}
$$

and consider the sum $\sum_{\lambda} \bar{\lambda}\left(f_{0}\right) C_{n}(\lambda)$. By the lemma above we have, using (3.2),

$$
\begin{aligned}
q^{r} \sum_{(r)} V(f) & =\sum_{\lambda} \bar{\lambda}\left(f_{0}\right) C_{n}(\lambda) \\
& =\sum_{k=1}^{n}(-1)^{k-1}\left(\frac{q}{k}\right) q^{n-k}+\sum_{\lambda \neq \lambda_{0}} \bar{\lambda}\left(f_{0}\right) C_{n}(\lambda) \\
& =c_{n} q^{n}+O\left(q^{n-1}\right)+O\left(q^{n} \cdot q^{Q n}\right) .
\end{aligned}
$$

Hence we obtain

$$
\sum_{(r)} V(f)=c_{n} q^{n-r}+O\left(q^{n-r-1}\right)+O\left(q^{0 n}\right)
$$

which completes the proof of the theorem.

References

[1] L. Carlitz: On the number of distinct values of a polynomial with coefficients in a finite field, Proc. Japan Acad., 31, 119-120 (1955).
[2] S. Uchiyama: Note on the mean value of $V(f)$, Proc. Japan Acad., 31, 199-201 (1955).
[3] -: Sur les polynômes irréductibles dans un corps fini. I, Proc. Japan Acad., 30, 523-527 (1954).
[4] -: Sur les polynômes irréductibles dans un corps fini. II, Proc. Japan Acad., 31, 267-269 (1955).

[^0]: 1) Numbers in brackets refer to the references at the end of this note.
 2) Thus we may get a simple proof of (1.3). The idea was suggested to the author by K. Takeuchi.
