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1. M. E. Noble [1] has proved the following

Theorem N. If the Fourier series of f(t) has a gap 0<|n—mn,
<N, such that

lim N, /log n;,= o
and f(t) satisfies a Lipschitz condition of order a(0<a<1) in some
interval |t—t,| <8, then
Q= O(I/n%)’ bnk: 0(1/%%),
where U, b, are mon-vanishing Fourier coefficients of f(¢).

In the present paper we treat the Fourier series with a certain
gap and satisfying some continuity condition at a point, instead of
in a small interval. Our theorems depend on the lemma (Lemma 1
in §2), which is due to M. E. Noble, except (iv) and (v).

We can also prove theorems concerning absolute convergence of
Fourier series with the above-mentioned conditions, analogously to
M. E. Noble [1]. These will be found in the second paper.

2. Lemma 1. Let (8,) be a sequence tending to zero and let
n=_[4em/5,]. Then there exists a trigonometrical polynomial T, (x) of
degree not exceeding n with constant term 1 such that:v

(1) |T(x) |<A/8n, for all z,

(i) IT(2) |=An/one™, Gn=la]|<m),

(iii) T (x)| < An[8n, Sfor oll x,

(iv) 1T (@) <A@ /8ne™ + 1/2%), (Bn=|2 |7, 2>1)P
(v) T (x)| <An*/8,, for all x.

Proof. Let E,=(—8§,, §,), and C,@) be its characteristic funec-
tion. We choose then 7,=3$,/2m and construct a set of even func-
tion A,(zx) (¢=0,1,2,...) defined by

ho() =~;L- Cn(),

m

ha@=1["Th@ydr (=0,1,2,...),
Tm 2

for =0 and i<m—1.
It is easy to see that
_ 0 (&né]xlgﬂ')s
@)= {w/sm (12 1=8,/2),

1) A denotes an absolute constant which is not the same in different occurrences.
2) 1 may be taken as near 1 as we like when m is sufficiently large.
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and that it is monotone in the remaining intervals [§,/2, §,] and
[ —8m —8&n/2]. Moreover it follows easily from the definition that
B () = O((#a)m‘;nax |ho(x)|)=o(_(f1_’_"_)_’i’i)
T &
uniformly in z. If @, and b, are the pth Fourier coefficients of
hn(x) we have, integrating (m—1) times by parts,

m—1
b e oo 4277,
Consequently if s,(x) is the nth Fourier partial sum of 4,(x),
((dm)t & 1 4m)m-!
(@) —50(z)] = O S?n oy pm_l):o(<8m>m_2)
uniformly in —7<z<w. Taking n=[4em/s,] we obtain
| hm(‘”) - Sn(w) = O(?’L/ Sme™)
which shows that the polynomial s,(x) satisfies (i) and (ii).
Further its constant term «,/2 satisfies

%sg-ao_f— f ho(@) de<1

and consequently the condition that the constant term is 1 can be
satisfied by taking T.(xr)=2,5,(x) where 1=<1,<2

(iii) and (v) follow from (i) and (iii), respectively, by a famous
inequality of Bernstein [2].

Finally we shall prove (iv). Since

T (%)= 2n f ”Tn(t +2) sinnt K,_,(t) dt,
™

where K,(t) is the Fejér f{grnel and K,()<n (0=t<w), K,(t)<1/nt?
(I/n<t<w)[2], we have

(T < An| f o "’”+ f I A SR O

——8 —3+8p,
—7/n —®- ‘5m x/n —0+8p,
S AnT [ A"f o AT
Sme™L win Laren U Ome” s
2
_fl—??-—+—‘3—.
mé™ T

Thus the lemma is completely proved.

Let 8(¢) be a monotone decreasing sequence such that §(¢)—0 as
t—>c and 8(t) is differentiable. We write 8(m)=3$, and &(m)=35,.

In the estimation of A, (x)—s.(x), the right side becomes minimum
when

n=[ dme'~"onlm(s, .
For such n, we get
| (35— 8,(@) | =018,/ Emdm=13Y

Similarly to Lemma 1 we get the following

Lemma 2. Let (8,) be a sequence tending to zero and let
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n=[4me'-™wn[8,.]. Then there exists a trigonometrical polynomial
Twx) of degree not exceeding m with constant term 1, satisfying the
conditions (i), (4i%), (v), Lemma 1, and
(ii')  |Ta@)| S An/S,etmsmomm=0_ (5, <|x|<m),
(V) | To@) | S A8t —mom/omin=D 4 1/a2),
W=l |Zm, 2>1).

3. Theorem 1. Let 0<a<1 and 0<B<min (1—a, (2—a)/3).
If

( 1 ) k@/(ﬁ‘a-3§)<nk< e?}c/(‘:+a+ﬁ)
(2) |ge1— My | > Aekns
and
h
(3) 7} LA —ft Ry |dt=O(he),
0
(4) L[ —re=n)de=0), unif. in r=t,
T
then °
( 5 ) a,nk=0(n;“), bn,cZO('n'l:a> y

where ay, b, are non-vanishing Fourier coefficients of f(t).
Proof. Let §,=1/n} and choose a sequence M,=[4¢k/S,]. Let

Tx (%) be the trigonometrical polynomial determined by Lemma 1.
Then we write, by (2),

4, =1 f "F @) T (8) cos mt dt

ko

2'21;__[ : [f@) =S (& +m/n) ] T, (t) cos mt dt

+ _él___ f "F I Tog (£ — T (b + /) Jcos myt dit

=I1+I2
and
1
Il:",;[ f + f ][f (t)~f(t+vr/nk)]TM,c(t) cosm,t dt
ltls&k ]tj>;k
=Iu+112.
We have then .
|1, léif blf(t)——f(t*l-w/n,c)ldt_g_‘%._
& —&; Ny

by the condition (8) and Lemma 1, (i), and
12| S AM,/8,6" < Aln;;
by (1) and Lemma 1, (ii). Further we write

L=A [ "F(t+min)| Tu, )~ T, (¢ + m/ny) |eos mt dt

=gﬁ " [Fet i = 1O |[Tu )~ T+ mim) | cos mat de

-
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+ i;— [ :f ®) [ka(t— 7/0) — 2T 00, (8) + Toa, (E + 'rr/n,c)] cos n,t dt

= 21+Izz-
Dividing the integral I,; into three parts, we get for a 6(0<6<1)

Ll =2 [T1 £ )= £+ ming] | The, 6+ 6mfng) | de

Ny

nk [;_/:A% fmk+f :I]f(t) FE+m/ng)]

s, s
| T, (£+ O /my) | dit
=L+ I+ Iy,
where 1>1 and
Ll s 422 L [ p) - fet mmplar <A< A

1+a = nk

—Asy

by (8) and Lemma 1, (iii), and putting F(¢)= f LF@)—f@+mn)| du

[ Ll S—2 AM’“ + A f If@®)— f(t+7r/nk)[dt

7;,8,6"

—AM; A A F(t)
e +%,;8—2 lf ®— f(t+vr/n;¢)ldt+0( ) 3 £4)

AMk A _ A
86" n,@,, = ng

by (1), (8), (4), and Lemma 1, (iv). I,; may also be estimated

similarly to I,,. Thus we have

15 ] <Az

Further we get
[ 131 <AM/’”//¢81¢ <A/n;
by Lemma 1, (v).
Collecting above estimations we get the conelusion.
Theorem 2. Let 0<a<l, 0<B8<(@—a)/3, and
y>2/min (1—8, 2—a—38)
(or especially 0<B<(1—a)/2 and v>2/(1—R)). If the Fourier co-
efficients of f(t) vanish except for n=[k'] (k=1,2,8,...) and the
conditions (8) and (4) of Theorem 1 are satisfied, then (5) holds true.
Proof runs similarly to that of Theorem 1, making use of Lemma
2 instead of Lemma 1. In this case
n,=[k"], 8, =1/k™, M,=4(ek)'*™".
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