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26. Capacity of Subsets of the Ideal Boundary

By Zenjiro KURAMOCHI
Mathematical Institute, Osaka University
(Comm. by K. KUNUGI, M.J.A., Feb. 13, 1956)

In the previous paper,”’ we introduced the notion of the capacity
of the subset of the ideal boundary and proved some theorems.
Unfortunately their proofs were much complicated. The purpose
of the present article is to give simple proofs. Let R be a Riemann
surface with a positive boundary. Let {R,} (#=0,1,2,--.) be an
exhaustion of R with compact relative boundaries {OR,}? and D
be a non compact domain in R whose relative boundary oD is com-
posed of at most enumerably infinite number of analytic curves
clustering nowhere in R. We say that a sequence D(|(R—R,)}
determines a subset B, of the ideal boundary.

1. Capacity of a Subset Bp. Let U, ,.;(2) be a harmonic funec-
tion in Ry, — Ry— (D) (Ru.;— Ry)) (in short we denote it by B, ,+;) such
that Un,nH(z): 0 on oR,, Un,nn(z): 1 on (aRnﬂ D) + (aDﬂ (Rn+i'_'Rn))
and ag”a’;f‘(z-):o on 9R,,;—D. Then we have the Dirichlet’s integral

L. sl = Unie s Un) =0,
whence

BHQH(U”’MHj(z)): Rnl,z+i(Un,n+i<z)> + lfneﬂ(U”’"”(z)— Unmsi+5®). (1)
But it is easily seen by Dirichlet’s principle that Bn-’Z3+i(Un,n+i(Z))

< D (U*®) <M< for every n and %, where U¥*(2) is a harmonic
Ry-R,
function in R,— R, such that U*(%)=0 on oR, and U*(z)=1 on oR,.
Therefore by (1)
M = D (Un n+t+j<z)) = D (Un n+t+j(z)) = D (Un n+t(z));

T Buntit

hence the sequence { D (Um+i+j(z)) is convergent, which implies

11m D (Un n+i+j<z> Un,n+i(z)) hm D (Un,n+t+j(z>>“‘ D (Un,n+i(\z>)}:0
g:z:]fn REYES] jgﬁ Bn,n+i+j By n+i

Thus {U,...(2)} converges to a function U,(Z) in mean. Since
Unn+i(2)=0 on OR,, it converges uniformly in every compact set of
R—(D(|(R—R,). We see Uniinsi+;R) = Unnsi+,2), by the maximum

principle. From this we have lim U,.; .4 ,(2)= n+z(z)<U,,(z)_hm

J=x

1) Z. Kuramochi: Harmonic measures and capacity of sets of the ideal boundary.
I-1I, Proc. Japan Acad., 30-31 (1954-1955).
2) In this article, we denote by 24 the relative boundary of A.
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Unnii+£2), hence {U,(R)} converges to a function U(2). We shall
prove that {U,(z)} converges to U(2) in mean. Since
(Un n+t+.,(z): ntt n+i+j(z)) = / U, n+t+.,(z) U+ n”“(z) ds

Bn,n+t on
PN By +i+ j—Rnd)

(Un+i n+t+j(z))’ -Dn”_sgfnﬂwﬁj(z)— Un+i,n+t+j(z)) =BnDn+i+(.Un’”+i+j(z))

- D (Un+t ari+?)). Let j—>oo. Then we see that { D (U,(2))}
Bp,n+i+ R—((R-Rp)ND)

is decreasmg Hence D(U.(?)) is convergent, whence D(U,(?)

—U,+(2))—>0, if » and ¢— . Therefore {U,(2)} converges to

U) in mean. Put lim DU,(2)= f aU(z) ds=Cap (By). We call

it the capacity of By and U(z) the equzlzbmum potential of B,.

In what follows, we show that U(z) has the essential properties
of the equilibrium potential in space.

Lemma 1. Let G be a domain containing o non compact domain
D. Let {Uf2)} be the family of harmonic functions with the boundary
value ¢ on ORy+93D. In this family, there exists a harmonic func-
tion with the boundary value ¢ and has the minimal Dirichlet’s
integral.”® Let this function be Up(z). Let Uiz) be a harmonic
Sfunction in R—R,—G with the boundary value U,(z) on 9G+9oR,
such that Uy 2) has the minimal Dirichlet’s integral over R— R,—G.
Then

Ur()=U42).
Let Uj(2) be a harmonic function in R,— R,—G such that Uj(2)

=U,() on oG +9°R, and l; =0 on oR,—G. Then we see, as before,

that {U,(?)} converges to U’(z) in mean and U’(z) has the minimal
Dirichlet’s integral among all functions with boundary value U,(z)
on OR,+oG. If D (U’(z))< D (Up(z)) d (d>0), then D (Ui2)

R-Ry-G Ry—~Ry—G

< D (Uy)—d (n=1,2,- ). NOW let U,(z) be a harmomc fune-
R—-Ry—G

tion in R,—R,—D such that U, (z)=Ux(2) on oR,((G—D)+9R, and
(2)=U'(z) on OR,—G. Then by Dirichlet’s principle D (U"(z))

< mD (U2) + D (Un®)) = < D (Up(z)) d. Choose a sub-

- n—RBo)(G—D)
sequence {U, (z)} of {U"(z)} Whlch eonverges uniformly in R—R,

—D to U*(). Then we have also D (U*(z)) <lim D (U/,,'(z))
< D (U,,(z)) d. This contradicts the mlmmahty of D (U])(Z))

R—-R, -D

Hence D (Un(?) = D (U’(z)) The function U'(?) is clearly the

R-Ry—G

harmonic contmuatlon of Ux(z) by Dirichlet’s principle. On the

8) In the present article, we suppose that there is at least one function with
bounded Dirichlet’s integral in this family.
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other hand, it is clear that such U’(z) is determined uniquely by
the boundary value on oR,+2G.» Hence U'(z)=Ux(?).

Theorem 1. Let ﬁn(z) (n=1,2,---) be the harmonic function in
R—R(DN(R—R,)) such that ﬁn(z)zU(z) on (DN (R—R.)), fj,,,(z):O
on OR, and ﬁn(z) has the minimal Dirichlet’s integral. Then

Ua(z) = UQR).

Proof. Since (D (R—R,)D(D()(R—Ry.,), by Lemma 1, U,(2)
(=1, 2,--) has the minimal Dirichlet’s integral over B— R,— (D)
(R—R,)) among all functions with the boundary value U,.,(z) on
OR,+2o(DN(R—R,)), hence

DU+ i2)£eVa(2))
== D(Un+i(z)) =+ 2€D(Un+t(z)) Vn(z)) + ez-D(Vn(z))zD(UnH(z))

D(Ua+i(2), Va(2))=0

for any small positive number e, where V,(2) is a harmonic function
in R—R,— (D (R—R,)) such that V,(2)=0 on OR,+3(D\(R—R,))
and D(V,(2))< c».

Since {U,..,(?)} converges to U(z) in mean,

0=1im D(U,.(5)— U@, V(@) = Hm/ DiUee)~ UE)D V(@) =0.

Hence D(U(z), Va(2))=0.

Since V.(2) is arbitrary, U(2) has the minimal Dirichlet’s integral
over R—R,—(D(\(R—R,)), whence U,(2)=U().

Corollary 1. If UR)=0, lzTIr)L UR)=1.

2L

Let Uy asi(2) be a harmonic function in Ry.— By— (D) (Ruri—Ra))
such that U, ,..(2)=0 on 2R, ﬁn,n+i(z)=U(Z) on (D (Rus;— Ryn)) and

gg’%’g‘(z) =0 on oR,,;,—D. Then by Theorem 1, l{im fjn,n+i(z)=U(Z) for

every n. Suppose U(®) < K<1 in D. Then by maximum principle
Unnei®) < KUnnii(2). Let i>co and n—> co. Then U() < KUGR).
This is absurd. This completes the proof.

Denote by J, (A< 1) the domain in which U(z)<4. Put H,=DJ,.
Then H, is a non compact domain® which determines a subset B,.

Corollary 2. B, is a set of capacity zero.

Let U,(?) be the equilibrium potential of B,. Then it is clear
that U,(?) <U(z). Hence lim U,(2) <2<1. This contradicts Corollary

2€EH;

1, therefore U,(z)=0. g

4) If there were two harmonic functions above-mentioned, by the minimality of
D(Ui(z)) (¢=1,2), we have D(Uy(2)), e(Uy(2)— Ux(2))=D(U,(?)) for every small positive
number ¢ and D(Uy(z), Uy(z)— Uy(2))=0, whence D(Uy(z)— Uy(2))=0. Thus U(z)= U,(2).

5) In what follows, we suppose that H, and D, are non compact. If they are
compact, our assertion is trivial.

and
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Lemma 2. Let D, and D, be two non compact domains. Then

D,+ D, is also a non compact domain. Then

Cap (Bp,)+ Cap (Bp,) = Cap (Bs,+n,),
where B, By, and By, .», are subsets of ideal boundary determined
by D,, D, and D,+ D, respectively.

From our definition this is evident.

2. On the Behaviour of the Green’s Function in the Neighbour-
hood of the Ideal Boundary. Let {R,} (n=1,2,---) be an exhaustion
of B. Let G(z,p) be the Green’s function of K with pole at p and
let M be so large number that G, = ZR[G(z, p)=M1] is compact.

We can suppose G,=R, If we congider R— R, as a non compact
domain D which defines the ideal boundary of R. Then it is clear that

1— G(;’Ip) =U(:). Put D,= & [G(z, p)>1] (3>0). Then D is a domain
&

determining a subset B, of the boundary which we ecall irregular
set. Then by Lemma 2, we have the following

Theorem 2. The irregular set of the Green’s function s of
capucity zero.

Let w2(z) be a harmonic function in D,() R, such that w2(z)=0
on 2D, and wi(z)=1 on 9R,(\D,. Then wi(z){ w?z). M. Parreau®
proved that w?(2)=0. Let w,,.(2) be a harmonic function in R,.;
—((Ryri— Ry) (D) such that w, ».,(2)=0 on OR,,;—D and wy,..;,(z)=1
on (DN (Rpi;—R,). Put lim %im Wo i) =w(2). Let w),..(2) be a

harmonic funection in R,.;,—Ry— (£, — R,) () D) such that w}, ,..(2)=0
on OR,+9R,.,—D and w} ,.;(2)=1 on o(D(\(By+;—F,). Put lim lim

W), ne()=w'(2). We proved that w'()=0 iz equivalent to w(z)=0.”
Then we have 0=U(z) >=w'(z) which implies 0=w(2) > w?(2). Hence
the theorem is an extension of F. Vasilesco and contains the result
of Parreau.®

We can construct an open Riemann surface 13.,\ by the process
of symmetrization with respect to 9D,. Then we have the following

Corollary. Dx+13A is o null-boundary Riemann surface.

Proof. Let w,(2) be the harmonic measure of (OR,() D,)+ (OR,. D:)
with respect to ((D,N\R,)—Ry)+((D,(\R.)—E,). Then wu2)=0 on
OR,+ 0R,, wx(2)=1 on (OR,()D,) and %@3:0 on @D,. On the other

hand, let U,..;(?) be a funetion in R,.,—(&,+—F.) () D,)—R, such

6) M. Parreau: Sur les moyennes des fonctions harmoniques et la classification
des surfaces de Riemann, Annales de 'Institute Fourier (1952).

7) See 1).

8) The set of irregular points of the Green’s function in space is of capacity zero.
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that U nse(2) =0 00 @Ry, U nes(@) =1 00 3(Dy () (Bors— o) and U %?;@..(zl
=0 on OR,,;—D,. Then it is clear that D (w,2)=< D (Un n+1(R))-

(DANE,O— R, Rp+i—R,
Hence, since B, is a set of capacity zero, we have D (11m @n(2))
DANCR-Ry) n=c0

< D (lim hm Upnii(2))=0. It follows that lim w,(2)=0. Thus Dﬁ-Dl

R Ry n=oco n=00

is a Rlemann surface with a null-boundary.

3. Capacity with respect to a non Compact Domain. Let D,
and D, be two non compact domains in R such that D, D, Let
U,+:(2) be a harmonic function in (R,.;() Dy)— (D, (R, —R,)) such
that U, ...(2)=0 on OD,(|R,,;, Upwnw(2)=1 on (OR,(\ D)+ D) (R

—R,) and i%kw —0 on OBy 1(De—Dy). If D(Uynil2)) =M< oo

for a certain n and every %, we can prove, as before, that {U, ,+:(?)}
tends to U,(?) in mean and U,(2)—~U(z) in mean. We call DU (z))
the capacity of B, determined by D, with respect to D,. We used
these results to prove that Og, is invariant by a quasi-conformal
mapping whose dilatation quotient is bounded.?

4. Correction to the Previous Paper. We used the following
lemma in the previous paper.® Let U(z) be the harmonic func-
tion in R—R,—(D[|(R—R,)) such that U(z)=0 on °R, U(x)=1 on
(DN (R—R,)) and URR) has the minimal Dirichlet’s integral. Put
G.= gR[U(z)>1—e]. Then

f aU(z) ds— f U@ g

for every e except at most one ¢,

But the proof was not complete. We prove, instead of the
above, the following lemma. There exists a set H in the open
wnterval (0,1) such that mes H=1 and if ¢ ¢ H, then

L= f 9U(z) ds = [?gff) ds.

Proof. Let U, () be a harmonic funetion in R,,—R,— G, such
that U.(z)=0 on OR, Uh(z)=1—¢ on oG, and %(%:o on OR,—G..

Then by Lemma 1, im U,,(2)=U(z). On the other hand, since f LaU’;‘ ds
RmﬂaGe

-—faU”;‘ ds and 8Um>0 on oG, limfaU’”ds_- lim 2 ’”ds We

m=oo m=oo
3R,

9) Z. Kuramochi: On the existence of harmonic functions on Riemann surfaces,
Osaka Math. Journ., 7 (1955).

10) ——: Harmonic measures and capacity of sets of the ideal boundary. I, Proc.
Japan Acad., 30 (1954).
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have by Fatou’s lemma L,= f §gols<hm f aU—-~L We can

m=oc

take p+ig=U(@)+1iV(2) as the local parameter at every point of

R—R,—(DN(R—R,)), where V(2) is the conjugate function U(z).
Then

UR) _ _1, 2UR)
op oq

bt f 178V (P o

where ¢,- f ~_ds. Suppose that there was a set E of positive

=0 on 9G,,

and

measure such that if ¢ e E, q. is smaller than L. We have D(U,(?))
<L, Thisisabsurd. This completes the proof. In the previous paper™
we used the fact that there exists a dense set F' in (0,1) such that

if ¢¢F, then f %Z_ds:L. Thus the proof of the theorem in the

o
previous paper' is valid.

11) See 10).



