396 [Vol. 32,

91. A Theorem on Paracompact Spaces

By Kiyoshi ISÉKI and Yasue MIYANAGA (Comm. by K. Kunugi, M.J.A., June 12, 1956)

Recently, K. Fujiwara [3] and K. Iséki [4] have shown that some properties on compact spaces are generalized very naturally to uniform spaces having Lebesgue property. In this paper, we shall extend a theorem of I. Gelfand and G. Silov [5] to paracompact space.

Let M be a metric space with metric ρ , and let f(x) be a function defined on M. For a point $x \in M$, we shall define the oscillation of the function f(x) at the point x. By ω (x, ε) , we denote the least upper bound of ρ (f(p), f(q)) for $p, q S(x, \varepsilon)$, where $S(x, \varepsilon)$ is the sphere with center at x and radius ε . Then $\lim_{\varepsilon \to 0} \omega$ (x, ε) $(=\omega(x))$ exists and this limit is called the oscillation of the function f(x) at the point x.

It is well known that a function f(x) defined on a metric space is continuous at a point x, if and only if the oscillation of f(x) at x is equal to zero (see W. Sierpiński [6], p. 184).

I. Gelfand and G. Silov [5] proved the following proposition. Let $\varphi(x)$ be a function defined on a compact set M in n-dimensional Euclidean space \mathbb{R}^n , and let $\omega(x) \leq \varepsilon$ for every point $x \in M$, then, there is a continuous function f(x) on M such that $|f(x) - \varphi(x)| \leq 2\varepsilon$.

We shall extend the proposition by I. Gelfand and G. Silov to more general topological space. First of all, suppose that M is a compact metric space. By the compactness of M, we can find a positive number η such that $\rho(x', x'') < \eta$ implies $|\varphi(x') - \varphi(x'')| \le 2\varepsilon$. The open covering $\{S(x, \eta) | x \in M\}$ of M has a finite covering $S(x_1, \eta), \dots, S(x_n, \eta)$. Since M is a normal space, for the finite number of the open sets $S(x_i, \eta)$ $(i=1, 2, \dots, n)$, there is such a decomposition $\lambda_i(x)$ $(i=1, 2, \dots, n)$ of unity that

- (1) each $\lambda_i(x)$ is a non-negative, continuous function on M,
- (2) $1=\sum_{i=1}^n \lambda_i(x)$ for every x of M,
- (3) $\lambda_i(x) = 0$ on $M S(x_i, \eta)$ $(i=1, 2, \dots, n)$.

(See N. Bourbaki [2], p. 66.) To define a continuous function f(x), let $f(x_i) = \varphi(x_i)$ and

$$f(x) = \sum_{i=1}^{n} \lambda_i(x) f(x_i),$$

then f(x) is continuous on M. For any x of M, there is an open sphere $S(x_i, \eta)$ containing x_i .

$$\begin{aligned} &|\varphi(x)-f(x)| = &|\varphi(x)-\sum \lambda_t(x)f(x_t)| \\ &= &|\sum \lambda_t(x)(\varphi(x)-f(x_t))| \le \sum \lambda_t(x)|\varphi(x)-f(x_t)|.\end{aligned}$$

Since $\rho(x, x_i) \ge \eta$ implies $\lambda_j(x) = 0$ and $\rho(x, x_i) < \eta$ implies $|\varphi(x) - f(x_i)| = |\varphi(x) - \varphi(x_i)| \le 2\varepsilon$, we have $|\varphi(x) - f(x)| \le \sum \lambda_i(x) |\varphi(x) - f(x_i)| \le 2\varepsilon$. Therefore we have the following

Theorem 1. Let $\varphi(x)$ be a function defined on a compact metric space M and $\omega(x) \leq \varepsilon$ for every x of M, then, we can find a continuous function f(x) such that

$$|\varphi(x)-f(x)| \leq 2\varepsilon$$
.

Now, let f(x) be a function defined on a topological space M. By the oscillation of a function f(x) at a point x, we shall mean the number $\omega(x) = \inf_{V} \delta(f(V))$, where V runs over all neighbourhoods of x and $\delta(f(V))$ is the diameter of f(V).

To extend Theorem 1, we shall consider a paracompact Hausdorff space M. Let $\varphi(x)$ be a function with the oscillation $\omega(x) \leq \alpha$ for every point x of M. Let ε be a given positive number. For each x of M, there is a neighbourhood V(x) of x such that $\delta(f(V(x))) \leq \alpha + \varepsilon$. Then $\{V(x)\}_{x \in M}$ is a covering of M. By the paracompactness of M, the covering $\{U(x)\}_{x \in M}$ has locally finite refinement $\{U_{\alpha}\}$. As well known, for the covering $\{U_{\alpha}\}$, there is a decomposition of unity:

- (4) There are non-negative continuous functions $f_{\alpha}(x)$ for each α .
- (5) $f_a(x)=0$ on $M-U_a$.
- (6) $\sum f_{\alpha}(x)=1$ for every x of M.

(See, cf. R. G. Bartle and L. M. Graves [1], p. 401.)

Let x_{α} be a point of U_{α} , and let

$$f(x) = \sum_{\alpha} f_{\alpha}(x) \varphi(x_{\alpha}),$$

then f(x) is continuous on M. For a point x of M, we have

$$\mid \varphi(x) - f(x) \mid = \mid \varphi(x) - \sum_{a} f_{a}(x) \varphi(x_{a}) \mid$$

$$= |\sum f_a(x)| (\varphi(x) - \varphi(x_a))| \le \sum_a f(x) |\varphi(x) - \varphi(x_a)|.$$

Suppose that $x \in U_{a_i}$ $(i=1, 2, \dots, k)$, then

$$|\varphi(x)-\varphi(x_{\alpha_i})| \leq \alpha+\varepsilon$$

and, by (5), $f_{\beta}(y) = 0$ ($\alpha_i \neq \beta$), therefore

$$|\varphi(x)-f(x)| \leq \alpha+\varepsilon.$$

Hence we have the following

Theorem 2. Let M be a paracompact Hausdorff space, and $\varphi(x)$ a function on M with $\omega(x) \leq \alpha$. For a given positive number ε , there is a continuous function f(x) such that

$$|f(x)-\varphi(x)| \leq \alpha+\varepsilon$$
.

Some of the results of similar type for vector space valued functions have been obtained by S. Kasahara. The detail considera-

tions will be appeared in his later paper.

References

- [1] R. G. Bartle and L. M. Graves: Mappings between function spaces, Trans. Amer. Math. Soc., 72, 400-413 (1952).
- [2] N. Bourbaki: Topologie Générale, Chap. IX, Hermann, Paris.
- [3] K. Fujiwara: Une note sur l'espace produit d'un espace topologique par luimême, Math. Jour. Okayama Univ., 5, 121-125 (1956).
- [4] K. Iséki: Notes on topological spaces. II. Some properties of topological spaces with Lebesgue property, Proc. Japan Acad., 32, 171–173 (1956).
- [5] I. Gelfand and G. Silov: Über verschiedene Methoden der Einführung der Topologie in die Menge der maximalen Ideale eines normierten Ringes, Recueil Math., 51, 59-73 (1941).
- [6] W. Sierpiński: General Topology (2nd Ed.), Toronto (1952).