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1. Let V be a complete variety non-singular in co-dimension 1
and F be an algebraic family o positive V-divisors. We shall say
that F is a total family if 2or every divisor Z algebraically equivalent
to 0 on V, there is a divisor X in F such that

Z. X-Xo
with a fixed X0 in F. F is called a maximal amily, if there is no
algebraic family containing F as a sub-family. In particular F is
called a complete family if every positive divisor which is algebraically
equivalent to a divisor in F is already contained in F and if every
divisor in F deermines he complete linear system of the same
dimension. A linear sys.em on V is called ample if it determines
a projective imbedding o2 V, i.e., an everywhere biregular birational
transformation o V into a projective space. When a linear system
is ample, it is clear ha the complete linear system deermined by it
is ample. Let X be a V-divisor. We shall say that X is linearly
effective if he complete linear system determined by X is ample.
We shall say that X is algebraically effective, if every divisor which
is algebraically equivalent o X is linearly effective. Finally we shall
say that X is numerically effective, if every divisor Y such that mY
is algebraically equivalent o mX for a convenient inSeger m, is
linearly effective.

When V is a projective variety, there is a finite number of
maximal algebraic amily containing the given divisor X, and in fact,
he set of positive V-divisors o the given degree iorms a finite
number of maximal families (Chow-v.d. Waerden [2). Also in his
case, there is a otal family on V and when X is any divisor on V
and C is a hyperplane section o2 V, there is a total amily which is
a set of positive divisors algebraically equivalent o X+mC 2or large
m (Matsusaka [3, 4_). In his paper, we need the 2ollowing heorem
on maximal families on non-singular projective varieties.

Theorem 1. Let V be a non-singular variety in a projective space

1) This research was supported by the National Science Foundation. We follow
the convention and terminology in Weil’s book (Weil [_6]). The writer got various
suggestions and advices from Well, to whom he wishes to express his deepest thanks.
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and G(V), G(V) be respectively the groups of divisors numerically
equivalent to 0 and the group of divisors algebraically equivalent to O.
(i) Then G,(V)/G(V) is a finite group (Matsusaka 5). (ii) When
X is linearly effective, there is a positive integer mo such that when-
ever mmo any divisor in mX+G,(V) is algebraically equivalent to
a positive divisor, and when Y,..., Yt are the complete set of repre-
sentatives of reX+ G(V), modulo Go(V), Y-Y form a complete set
of representatives of G,(V)mod G(V) (Matsusaka 5.). (iii) Let Y
be any V-divisor and X is a V-divisor which is linearly effective.
Then there is a positive integer mo such that whenever mmo, Y+mX
is numerically effective, and any positive V-divisor numerically equiv-
alent to it belon.gs to a complete total family (Matsusaka [4, 5).

Let A be an Abelian variety and X be a positive A-divisor. We
shall say that X is non-degenerate if number of points a on A such
that XX is finite. In the case of Abelian varieties we have the
following finer theorem.

Theorem 2. Let X be a positive non-degenerate divisor on an
Abelian variety. There is a positive integer mo such that whenever
m_mo, mX is linearly effective. When that is so, mX is also alge-
braically effective (Weil 7).

Let us return $o the general case where V is a complete variety
non-singular in co-dimension 1 and Xo be a positive V-divisor. Let
i be he se% of positive divisors X such %ha

reX----- m’Xo (rood G,( V))
for convenient m, m’. is uniquely determined when one of the
divisors contained in it is given. We shall say that defines a
structure of polarization on V when ! contains a linearly effective
divisor. When we consider V the variety with a structure of polari-
zation, we shall say tha V is a polarized variety. Therefore, a
polarized variety is he variety with a set of divisors with he prop-
erty described above on it. The variety without structure shall
be called the underlying variety of the polarized variety.

From now on, let us assume that underlying varieties are non-
singular varieties and classes which define polarizations contain alge-
braically effective divisors. By Theorem 1 we can define on any non-
singular projective variety a natural polarization, tha is, the polari-
zation defined by he class of divisors determined by hyperplane
sections. From now on, let us assume tha every non-singular pro-
jective variety is polarized by its natural polarization. When the
given variety V is an Abelian variety with the origin O, we emphasize
here tha it is a variety with an additional structure, i.e., a struc-
ture obtained by putting on it a point O.
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2. Let V be a polarized variety polarized by he class of divisors
and lee X be a linearly effective divisor in . The complete linear

system determined by X defines a projective imbedding fx of V,
which is determined, up to a projective ransformation, by X. Let
P(V,) be Che set of varieies of the form fx(V)where X runs
over all algebraically effective divisors in . and fx runs over all the
set of. projective imbedding determined by Che complete linear system
(X) (we do hOe include here such projective imbeddings fk which
imbed V into lower dimensional spaces Chart the general fx). Let
S(V, F) be the set of varieties of the form fx(V) where X runs
over all divisors contained in a complete family F containing alge-
braically effective divisors. Every variety in P(V, ) is, as already
mentioned above, supposed to be polarized by its natural polarization.

Theorem 3. Let F be any complete family containing algebraically
effective divisors in . Then S(V, F) is contained in P (V, ) and
when V is an Abelian variety, P(V, ) is the join of such S(V, F).
S(V, F) is such that its closure is an algebraic family, i.e., the closure
of the set of Chow-points of varieties contained in it forms an alge-
braic variety whenever F is complete, and contains algebraically effec-
tive divisors.

The first statement is an immediate consequence of the definition.
As o the latter, we can parametrize the set of complete linear
systems contained in F by a subvariety of the Picard variety of V.
Since the closure of the set of varieties projectively equivalent to
V in a projective space is an algebraic family, we get our theorem.

Theorem 4. Every variety in P(V, ) is birationally equivalent
to each other by an everywhere biregular birational correspondence.
In particular, when V is an Abelian variety, underlying varieties of
polarized Abelian varieties in S(V, F) are projectively equivalent to
each other.

The first statement is clear from the definition. There is a
birational transformation f between Abelian varieties A, A’ in S(V, F)
such that f(O)=O’ where 0 and 0’ are origins of A, A’, and that f
is he birational transformation determined by a divisor on A which
is algebraically equivalent o hyperplane sections. Applying a suitable
translation on A’, we can get a birational transformation f’ of A
onto A’ such that hyperplane sections are transformed by f’ to hyper-
plane sections. This implies that f’ is a projective transformation.

Theorem 5. Let A be a polarized Abelian variety and G be the

2) In general P( V, )- US(V, F) is the set of varieties fx(V) such that even though
X is algebraically effective, there is a positive divisor X’ algebraically equivalent to
X with l(X)= l(X’).
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group of automorphisms of it. Then G is a finite group.
According o Theorem 4, any underlying varieties of polarized

Abelian varieties A, A’ in S(V, F) are projecively equivalent. On
the other hand, the set of projective transformations which trans-
form the underlying variety A onto itself forms a finite number of
algebraic families. According to Chow’s theorem (Chow [1), there
is no algebraic family of Abelian subvarieies on the given Abelian
variety. From this we see that the set of projective transformations
which transform the underlying A onto itself forms a finite group.
Our %heorem is an easy consequence of this.

Theorem 6. There is the smallest field K over which one of the
S(V, F) is defined for the given on V, whenever the characteristic
is O, and K is the intersection of the smallest fields of definitions of
varieties contained in P(V, ). When V is a complete non-singular
curve, the above statement is true even in the case of arbitrary charac-
teristic. In the former case, every other S(V, F’) is defined over an
algebraic extension of K of a finite degree. In the latter case, every
other S(V, F’) is also defined over K.

Since F is uniquely determined by one of its members X, let
us write the smallest field of definition of S(V, F)as kx. By Th. 1,
mX is again algebraically effective and belongs $o the complete otal
family. We see hat kx is contained in kx and kx is an algebraic
extension of degree at most equal to GV)/G(V). Hence there
is an integer mo such hat whenever m and m’ are multiples of
too, kx=k,x. Call this field K. Then it is easy to see that the
smallest field of definition of S(V, F’) contains K and is an algebraic
extension of a finite degree. Let U be any variety in P(V, ) and
K’ be he smallest field of definition of U. If we observe that K’
contains kx when m is sufficiently large, where n is a certain
integer, our theorem follows easily.

The field defined in he above theorem shall be called the field
of moduli of the polarized variety.

3. Let U be a complete variety and G be a group of every-

where biregular birational transformations of U onto itself. Let
us assume that G is a finite group consisting of f (i=1,..., m).
Let W be a variety and g be a rational mapping of U onto W such
that
(i) g is defined everywhere on U;
(ii) g(u)=g(fi(u)) for every u on U;
(iii) when W’ and g’ are another variety and a rational mapping
from U onto W’, satisfying generically (i) and (ii), there is a rational
mapping h from. W onto W’ such that g’=h.g and that h is defined
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at g(u’) whenever g’ is defined at u’.
The variety W satisfying (i), (ii), (iii) is defined to be a quotient

variety of U with respect to G and g is defined to be the canonical
mapping of U onto W. When W and g exist, W and g are deter-
mined uniquely up o everywhere biregular birational transforma-
tions.

When U is an Abelian variety polarized by the class . and
when G is he group of automorphisms of it, the quotient variety
W is defined $o be a generalized Kummer variety of it. When G
is the symmetric group on n letters operating on U.-. U of
the product o2 n factors equal o U in the obvious manner, the
quotient variety of it by G is called the symmetric product of U
of degree n.

Theorem 7. Let U be an absolutely normal projective variety

de.fined over a field k (without polarization) and G be a finite group

of everywhere biregular birational transformations of U onto itself.
There exists a quotient variety of U with respect to G. Moreover,
when every element of G is separably algebraic over k and its con-
jugate over k is also an element of G, there are a quotient variety and
a canonical mapping both defined over k. And the quotient variety is
absolutely normal.

As a special case o2 this, we see that the symmetric product
of an absolutely normal projective variety defined over k is defined
Over k togeher with a canonical mapping and is absolutely normal.

Now we have the 2o]lowing heorem, which is a consequence of
Wei]’s results (Weil [8) on the field o2 definition of the moving
varieties and Th. 5, Th. 6, Th. 7 of his paper.

Theorem 8. Let us assume either that the characteristic of our
universal domain is zero or V is a curve and that the group G of
everywhere biregular birational transformations of V onto itself is a

finite group. Let K be the field of moduli of V. There is a quotient
variety W of V with respect to G defined over K such that when U
is contained in P(V, ) and is defined over a field K’ containing K,
there is a canonical mapping g of U onto W defined over K’. When
U’ is another variety in P(V, ) and f is an everywhere biregular
birational transformation of U onto U’, and when g’ is a canonical
mapping of U onto W, then

g--g’.f

3) Generally speaking, the quotient variety of the variety U with respect to a

group operating on it should be defined in terms of quotient rings. But since in our
case the matter is very simple, the writer prefers this definition.
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