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153. Remarks on the Sequence of Quasi-Conformal Mappings

By Kéichi SHIBATA
(Comm. by K. KunNuaGi, M.J.A., Nov. 12, 1956)

1. It seems to me that there are essentially two kinds of defini-
tion, stronger and weaker, for quasi-conformal mapping with bounded
dilatation. The former is rather classical definition of Grotzsch,
Teichmiiller and other authors. In 1951 Pfluger suggested the latter
r6], and Ahlfors remarkably improved the theory of quasi-conformal
mapping by making use of it in recent few years [1-3]. The present
Note, which I owe much to the investigations of Ahlfors, is concerned
with relations between these definitions.

Definition 1. A topological mapping w=f(2) from a domain D
in the 2(=xz+1iy)-plane to a domain 4 in the w(=wu-1v)-plane is called
K-QC mapping in D, when it satisfies the following conditions there:

I) all the partial derivatives u,,u,,v,, v, exist and are continuous,

1I) J (@) =u0,—u,0, >0,
10 lpl+lel o o o,
Ip|—1q|

where p,q are the complex derivatives of f

p@)=Ff,= ;-[<u,+vy>+i<vx—uy>1,

q<z>=ﬁ=§[<ux—vy>+i<vx+u,,>1,

and K is a constant >1.

Let 2 be a Jordan domain, on whose boundary four ordered
points 2, 2,, 2;, 2,, are marked in the positive sense with respect to Q.
This configuration is named quadrilateral and is denoted by 2(z,,%s,%;,2,)
or simply by 2. If one maps a quadrilateral £ by means of a sense-
preserving homeomorphism 7'(z), the image T'(2) is again a quadri-
lateral. £ can be mapped conformally onto the interior of a rectangle
0<é<1, 0<y<2 in the {(=&+1igp)-plane, so that the points z,, 2., 2, 2,
correspond to {=0, 1, 14142, 74 respectively. By module of the quadri-
lateral 2(z,,2,,2,,2,) is meant the positive number 2, which shall be
denoted by mod 2(z,, 2, 2s, 2,).

Definition 2. A topological mapping w=f(2) which transforms
a plane domain D onto another such 4 is called a K-QC* mapping,
when it satisfies the following conditions:

I") the mapping w=f(2) is sense-preserving,
II'y for any quadrilateral Q(z,,z,,2;,2,) contained together with its
boundary in D the inequality
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mod f(2(2y, 25 23, 2,)) < K mod 2(7y, 25, 23, 2,)
holds, where K is a finite constant >1.

We easily see by the module theorem that K-QC mapping is
K-QC*.

2. Lemma 1. Suppose that a sequence {C,} of Jordan curves
converges to a Jordan curve C containing the origin w=0 in its
anterior in Fréchet sense and that the finite domain D, bounded by
each curve C, also contains w=0. Let w=F,(z) (F,(0)=0, F,(0)>0)
be the function which maps the unit disk |z2|<1 conformally onto D,.
Then the sequence {F,(2)} of the mapping functions converges uni-
formly on |z|=1 [4].

Proof. i) {F,(2)} is equicontinuous on |z|]=1. For otherwise,
there would exist two sequences {z:}, {2/} on |z|=1, a subsequence
{Fnk(z)} of {F,(2)} and a positive number &;, such that we have

[F’nk(z,’c) F, ()] =8>0 (k=1,2,---), hmlzk—z |=0.

Without loss of generality we may assume z,— 2, 2 —>2, for k—>oo.
We can choose parametrizations w,(t), w(t) (0=<t<1) of the Jordan
curves C, (n=1,2,---) and C, such that {w,(t)} converges to w(t)
uniformly on the interval [0, 1]. If we put F, (zi)=wi=w,(t),
F, (&)=w/=w,(t{), then we have [t;—t/|=>a>0 (k=1,2,---). For
arbltrary ¢>0 we choose a number k, so large that the inequalities
|2,—2i|<e, |2,—#{|<e simultaneously hold for 4>k, The common
part of the circle |z—z,|=7 (resp. the disk |z—=z,] <) with the unit
disk |z|<1 will be transformed by F,(z) to some cross-cut I', ,
(resp. some subdomain D, ,) of D, , whose endpoints shall be denoted
by A, ,=w, (1), B,,=w,(t/(r)). Then |ty(r)—t{(r)|>a (¢=r=<1;
k>Fk,+1). Since C is a Jordan curve, we have |w((r))—w(t/(r))|
>R >0. Consequently we see by our assumption of Fréchet con-
vergence that there exists a positive integer k; depending on y<g,
such that
|w, (1)) —w, E(r))|=v>0 for all re[e, 1]

provided k>Fk,. Thus we can extract a contradiction from the well-

known inequality
1 d,r AL
ar < = dA(r),
[,
where A(r) means the area of an (k= F,).
ii) Let F'(z) be the function mapping |z|<1 conformally onto
the interior of C (F'(0)=0, F’(0)>0). Then by Carathéodory’s theorem
F,(z)} converges uniformly to F'(z) in |z|<1. F'(2) is continuous on
[z]<1.
iii)y {F,(2)} converges to F'(z) uniformly on |[2|=1. For other-
wise, rln‘ax |F()—F,(2)]=a">0 (n=1,2,---). By the maximum-modulus
z]=1
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principle and i) the family {F,(2)} is normal on |z2]<1. Namely, a
suitable subsequence {F, (2)} of {F,(2)} can be chosen so that it is
uniformly convergent on |z|<1. Put

lim F, (2)=F,2) on |z|<L (1)

Then by ii) F,(2)=F(2) in |z|<1 and accordingly on |z|<1. There-
fore we would have max |Fy(2)—F,(?)|=« (v=1,2,---), which is
contrary to (1). -

Theorem 1. Let {=¢,(2) (9,(00=0; n=1,2,---) be a K-QC map-
ping from |z|<1 to |{|<1l. If the sequence {p,(2)} converges to a
Sunction p(2) uniformly in |2|<1, {=¢(z) is ¢« K-QC* mapping from
[2]<1 to |C]<1.

Proof. It is known that {=g¢(2) supplies a homeomorphism from
|z]<1 to |{|<1 [7]. Let us fix a rectangle R confined with its
boundary B in |z|<1, whose vertices shall be denoted by 2z, 2;, 23, 2,
We write ¢,(2,)=C", ¢iz,)=C, (k=1,2,3,4; n=1,2,--.) for later use.
Suppose that B is transformed by ¢,(z) to C, and by ¢(z) to C. Then
C, and C are Jordan curves, and the sequence {C,} converges to C
in Fréchet sense. Let [C,] (resp. [C]) be the interior of C, (resp. C).
If we put @(z,)=C_, for the centre z, of R, {, will be contained in [C, ]
from some number N onwards. Let {=G,(Z) (resp. {=G(Z)) be the
function which maps [C,] (resp. [C]) conformally onto |Z|<1 with
the normalization G,(0)=G(0)=¢, G,0)>0, G'(0)>0; n=N. If we
put Z{=G,;'C™), Z,=G {,), we see at once

},ijg G(ZM)=lim (P =(,=G(Z,). (2)
Now, if {Z{™) never tend to Z, for m— c, then for a suitable sub-
sequence, say again {Z{™}, we would have lim Z{”=Z;=Z,. There-

fore lim G (Z{")=G(Z;)=G(Z,) by Lemma 1 and (2). We must have
Zi=7, (k=1,2,38,4), since G(Z) is univalent. We conclude
lim mod I'(Z™, Z{™, Z{™, Z™Y=mod I'(Z,, Zy, Zs, Z,),

n>o0

where I' denotes the unit disk. It is equivalent to the relation
lim mod [C, (&, &, £, €§) =mod [C1(Cy Car Cor )
from which our desired inequality
mod [C (&, Cx G5, Cy) =< K mod R(z;, 2o, 23, 25)

follows.

3. The following propositions will play fundamental role through-
out the whole theory of K-QC* mapping.

Let w=f(2) be a K-QC* mapping defined in a rectangle R:
a<<x<b, c<y<d. Then

1°  f(2) is totally differentiable at almost all points of R

df(z)=p(2)dz+q(2)dz;
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2° at such a point there hold the inequalities
IplP=]q*=0, (p|+la)*<K(p[—|al®:;

3° for almost every value of y, belonging to the interval (c,d)
f(x,y,) is absolutely continuous with respect to « in the interval (a, b)
[8, 5].

The next is due to Ahlfors [3]:

4° any set of 2-dimensional measure zero in the z-plane is trans-
formed by w=s(2) to a set of 2-dimensional measure zero in the
w-plane.

It follows from 1°, 2° and 4° that p(2) =0 a.e. in R, whence the
measurable function h(z)=q(2)/p(2) is defined a.e. in R and satisfies

|h(z)|_<_j£:~1—<1 a.e. in R.
K41

Lemma 2. Let {=¢,(2) (9.(0)=0, ¢,(1)=1) be a K-QC* map-

ping from |z|<1 to [{|<1, and let us write

dp=pdet+aq,ds,  h(2)= 247
0.(2)

If lim f f |h,(2) P dedy =0, then we have lim ¢, (2)=z uniformly on
n-»o0 lz|<] n-» o0
2] <1.
Proof. Let C be an arbitrary rectifiable Jordan curve in |z|<1
and let [C] be its interior. Then by 2°, 3° and Schwarz’s inequality

oz =4 [ [ardy’ =4 [ [h@p. oty
‘o ‘ ] el

<4 f f |h(2) |t dady f f | p.(2) Pdady < 4K f f | h(2) |2 dvdy.
K] [€<}

3
Since the sequence {¢,(2)} forms a normal family on [2|<1 [1],
its suitable subsequence {, (2)} will be uniformly convergent there.
If we put

lim g, (@) =0 |2|<1,
we have by the above inequality

f p(2)dz=1im f @2, (2)d2=0.
o vreo o

Therefore {=g¢(z) must be regular in |z|<1, while it is a topological
mapping from |z|<1 to |{|<1 by Theorem 1. Thus @(2)=z. If the
original sequence {¢,(2)} do not converge to z uniformly on |z|<1,
we would have for a suitable subsequence {¢,(2)}

max [2—¢, (2)|=a>0 (k=1,2,---).

|2]<1
This is a contradiction, since {¢,(2)} always contains a subsequence
converging uniformly to z on |2|<1.

Lemma 3. For any function S(z) of summable square it is possible
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to choose a sequence {S,(2)} (n=1,2,---) of functions C* which vanish
outside a compact set, so that

lim f f |S(2)— S,(2) ! dwdy =O.

Proof. Given any ¢>0, we can find a bounded measurable func-
tion s(2) vanishing outside a compact set, such that

f f |S(2)—s(2) [*dady <—§.

Let s, ,(2) be the arithmetic mean of the function s(z) over the disk
[(—z]|<1/m (m=1,2,---)

8 m(R)= g:j f v f 2nss(z+rei°)frdrd0.
0 0

Then s, ,,(2) is continuous and uniformly (with respect to m) bounded
funetion, and

lim s, ,(2)=s.(2) a.e.
m—>»oQ

Therefore there exists a number m,(c), such that for m =mye) we
have

f f | 8:(2) — 8¢, () |Pdady < %

Let us mean s, ,(2) arithmetically once more over a disk with radius
1/k (k=1,2,---) to obtain the smooth function

2 ;U pom
sE,m,k(z)z? [ [ Se. (2 +re)rdrdo.
There exists a number k,(¢, m), such that for k=k,(s,m) we have
S 150n@)=smsle) Py < £
Consequently there holds the inequality
[[18@=s0mu@)Fdudy<e, (8)

so far as m,k is large enough for given ¢. Let S,(z2) be one of the
functions s, ,, ,(2) satisfying (3) when ¢é=1/n. The proof is completed.

Theorem 2. Given any K-QC* mapping {=¢(2) from |z|<1 to
|C|< 1, there exists a sequence {p,(2)} of functions which converges to
@(2) uniformly on |2| <1, such that each function {=q¢,(2) furnishes a
K-QC mapping from |z|<1 to |{|<1.

Proof. We may assume ¢(0)=0, »(1)=1 without loss of generality.
Let us write dp=pdz+qd2, h=q/p a.e. in |z|<1l and put A(z)=0
where it is not defined. Then we can construct by the method in
Lemma 38 a sequence {h,(2)} of continuously differentiable functions
which tends to A(z) in L? sense. Each &,(z) has a uniformly bounded
compact carrier and |h,(2)| <(K—1)/(K+1)<1. Ahlfors proved: for
any square-summable and Hoélder-continuous function h,(2) (|h,(2)]
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<k<1) there exists a function w=f,(2)eC' which supplies a homeo-
morphism between the whole z- and w-plane, such that +,(2)/s,(2)=h,(z),
where 0,(2)=02f,/02, +,(2)=0f,/0z [2]. Let {=¥,(w) be the function
which maps conformally onto |[{|<1 the image of |z|<1 by f,(2) and
let ¢,(2) be the composite function {=¢,(2)=7,,(f,.(?)) with the normali-
zation ¢,(0)=0, ¢,(1)=1. Every ¢,(?) is K-QC, and we write dg,
=p,dz+q,dz. One may express the composite function ¢,.p ' by
means of ,() with the independent variable {. It is obviously a
K*QC* mapping between the unit disks which can be considered

conformal with respect to some Riemannian metric |d{+hk,()dZ]. In

order to calculate %,(C), dz and dz should be eliminated from three
relations
dp,=p,d2+q,dz, dp=pdz+qdz, dp=qdz+pdz.
We obtain
(I2 P —leHde.=(P.p—2.0)de +(Pe,— P.0)dP,

and finally

7 (0)=2Pn [ OPn _ P(2) h(&)—I(2)

" op/ 2p  p() 1—h,(2)h(2)

Since

h.(2)—h(z) < K:—1

1—h,(2)h(2) 2K '’
it follows by the well-known theorem of Lebesgue that

: 7 2 JEd ; h(2)—h@) P nje_ 2 —

lim [ f | B [FdSdy = [ f }gghW‘(mz)l |9(2) [)dady =0.
Therefore by Lemma 2 the sequence {#,({)} tends uniformly to the
identity on |{| <1 for n— oo, in other words, lim ¢,(2)=¢(?) uniformly
on |z|<1. o
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