152. Note on Free Algebraic Systems

By Tsuyoshi FUJIWARA

Department of Mathematics, Yamaguchi University (Comm. by K. SHODA, M.J.A., Nov. 12, 1956)

In his paper,¹⁾ K. Shoda has defined only the free A-algebraic systems, when he has discussed the free algebraic systems. However, in this note, we shall define free algebraic systems more generally. And we shall show a generalization of the Shoda's fundamental theorem²⁾ (Theorems 1, 2 and 3), and a necessary and sufficient condition for the existence of the free algebraic system with an arbitrary set of relations (Theorem 3). Finally, we shall show a characterization of the algebraic systems defined by only a set of relations, i.e. the A-algebraic systems satisfying a set of relations (Theorem 4).

Throughout this note, the system V of single-valued compositions will be fixed. Let E be a set of generators, then the absolutely free algebraic system $F(E,\phi)^{s_0}$ is defined. And let P be a family of postulates with respect to V and E, then P-algebraic systems generated by E are defined as residue class systems of $F(E,\phi)$ satisfying P. And (E,P) denotes the set of all P-algebraic systems generated by E. Moreover, let R be a set of relations (identities) in $F(E,\phi)$, then the P-algebraic systems satisfying R generated by E are defined. And (E, P, R) denotes the set of all such P-algebraic systems.

An algebraic system \mathfrak{F} is called a free *P*-algebraic system with a set *R* generated by *E*, or a free algebraic system belonging to (E, P, R), when \mathfrak{F} is contained in (E, P, R) and every algebraic system in (E, P, R) is a residue class system of \mathfrak{F} . And we denote it by F(E, P, R).

Theorem 1. If an algebraic system \mathfrak{A} is contained in (E, P, R), then there exists a set S of relations satisfying $\mathfrak{A}=F(E, P, S)$ and $S \supseteq R$.

Proof. Let $\mathfrak{A} \in (E, P, R)$, then it is clear that $\mathfrak{A} \in (E, \phi, R)$.⁴⁾ Hence there exists a set S of relations satisfying $\mathfrak{A} = F(E, \phi, S)$ and $S \supseteq R$ by

1) K. Shoda: Allgemeine Algebra, Osaka Math. J., 1 (1949).

2) Using our notations, we can show the Shoda's fundamental theorem for the free algebraic systems as follows: Let P be a family of composition-identities. Then i) there exists a free algebraic system F(E, P, R) for every set R of relations, ii) if an algebraic system \mathfrak{A} is contained in (E, P, R), then there exists a set S of relations satisfying $\mathfrak{A}=F(E, P, S)$ and $S\supseteq R$, and iii) if $R\subseteq S$, then F(E, P, S) is a residue class system of F(E, P, R).

3) In his paper 1), K. Shoda has denoted by O(E) the absolutely free algebraic system.

4) ϕ denotes the empty set.

No. 9]

the Shoda's fundamental theorem. Now, it is verified that $\mathfrak{A} \in (E, P, S)$, because $\mathfrak{A} \in (E, P, R)$ and $\mathfrak{A} \in (E, \phi, S)$. Moreover, any algebraic system in (E, P, S) is a residue class system of \mathfrak{A} , since $\mathfrak{A} = F(E, \phi, S) \in (E, P, S)$ $\subseteq (E, \phi, S)$. Hence \mathfrak{A} is a free algebraic system belonging to (E, P, S), i.e. $\mathfrak{A} = F(E, P, S)$.

Theorem 2. Suppose that there exists F(E, P, R) for every set R of relations. If $R \subseteq S$, then F(E, P, S) is a residue class system of F(E, P, R).

Proof. Let $R \subseteq S$, then it is clear that $(E, P, S) \subseteq (E, P, R)$. Hence $F(E, P, S) \in (E, P, R)$. Therefore F(E, P, S) is a residue class system of F(E, P, R).

Let R and S be two sets of relations in $F(E,\phi)$. A condition that R implies S is called an implication from R to S, or simply an implication. Moreover, a family P of postulates is said to be equivalent to P^* , when $(E, P) = (E, P^*)$.

Theorem 3. In order that there exists F(E, P, R) for every set R of relations, it is necessary and sufficient that P is equivalent to a family P^* of implications.

(I) Proof of sufficiency: Let P be equivalent to a family P^* of implications, then it is obvious that $(E, P, R) = (E, P^*, R)$ for every set R of relations. Hence it is sufficient to prove the existence of $F(E, P^*, R)$ for any set R of relations.

Let \mathfrak{A} be any algebraic system contained in (E, P^*, R) . It is, of course, clear that $\mathfrak{A} \in (E, \phi)$. Hence there exists a congruence $\theta_{\mathfrak{A}}$ of $F(E, \phi)$ satisfying $\mathfrak{A} = F(E, \phi)/\theta_{\mathfrak{A}}$.⁵⁾ Now, let $\varphi_R = \bigcap_{\mathfrak{A} \in (E, P^*, R)} \theta_{\mathfrak{A}}$, then it is verified that $F(E, \phi)/\varphi_R \in (E, P^*, R)$, since P^* is a family of implications. And it is clear that any algebraic system \mathfrak{A} in (E, P^*, R) is a residue class system of $F(E, \phi)/\varphi_R$, since $\mathfrak{A} = F(E, \phi)/\theta_{\mathfrak{A}}$ and $\theta_{\mathfrak{A}} \geq \varphi_R$. Hence $F(E, \phi)/\varphi_R$ is a free algebraic system belonging to (E, P^*, R) , i.e. there exists a free algebraic system $F(E, P^*, R)$ $= F(E, \phi)/\varphi_R$.

(II) Proof of necessity: Suppose that there exists F(E, P, R) for every set R of relations. First we shall define a set \overline{R} , for every set R, as the set-sum of all sets S satisfying F(E, P, R) = F(E, P, S). Then it is verified that

(*) $F(E, P, R) = F(E, P, \overline{R}) = F(E, \phi, \overline{R})$

for every set R of relations. Now we shall define P^* as the family of all the implications written in the form that R implies \overline{R} . In the following, we shall show the fact that P is equivalent to P^* , i.e. $(E, P) = (E, P^*)$.

Let $\mathfrak{A} \in (E, P)$, then there exists a set R of relations satisfying

⁵⁾ $F(E,\phi)/\theta_{\mathfrak{A}}$ denotes the residue class system of $F(E,\phi)$ modulo $\theta_{\mathfrak{A}}$.

 $\mathfrak{U}=F(E,P,R)$ by Theorem 1. And by (*) we get that $\mathfrak{U}=(E,P,R)$ = $F(E,\phi,\overline{R})$. Now it is verified that $S\subseteq\overline{R}$ implies $\overline{S}\subseteq\overline{R}$ by Theorem 2. Hence $F(E,\phi,\overline{R})$ satisfies the family P^* of implications. Therefore, $(E,P)\subseteq (E,P^*)$.

Hereafter we shall prove that $(E, P) \supseteq (E, P^*)$. It has been verified in (I) that there exists $F(E, P^*, R)$ for every set R of relations. Hence we can define R, for every set R, as the set-sum of all sets S satisfying $F(E, P^*, R) = F(E, P^*, S)$. Now let $\mathfrak{U} \in (E, P^*)$, then there exists a set R of relations satisfying $\mathfrak{U} = F(E, P^*, R)$. And it is clear that $\mathfrak{U} = F(E, P^*, R) = F(E, \phi, \tilde{R})$. Now it is evident that $\tilde{R} \subseteq \overline{\tilde{R}}$. And it is verified that $\tilde{R} \supseteq \overline{\tilde{R}}$, since \mathfrak{U} satisfies the family P^* containing the implication from R to $\overline{\tilde{R}}$. Hence $\tilde{R} = \overline{\tilde{R}}$ and $\mathfrak{U} = F(E, \phi, R)$ $= F(E, \phi, \overline{\tilde{R}})$. Moreover, $F(E, \phi, \overline{\tilde{R}}) = F(E, P, \overline{\tilde{R}})$ by (*). Therefore, we get that $\mathfrak{U} \in (E, P)$, $(E, P^*) \subseteq (E, P)$, and hence $(E, P) = (E, P^*)$.

Theorem 4. In order that (i) there exists F(E, P, R) for every set R of relations, and (ii) any residue class system of an algebraic system in (E, P) is contained in (E, P), it is necessary and sufficient that P is equivalent to a family P^* of relations.

Proof. The sufficient part of this theorem is evident. Hereafter we shall prove the necessary part. Suppose that P satisfies the conditions (i) and (ii). Then there exists $F(E, P, \phi)$. And $F(E, P, \phi) \in$ $(E, P) \subseteq (E, \phi)$. Hence there exists a set P^* of relations satisfying $F(E, \phi, P^*) = F(E, P, \phi)$, i.e. $F(E, P^*, \phi) = F(E, P, \phi)$. Now we shall show that P is equivalent to P^* , i.e. $(E, P) = (E, P^*)$. Let $\mathfrak{A} \in (E, P^*)$, then there exists a congruence θ of $F(E, P^*, \phi)$ satisfying $\mathfrak{A} = F(E, P^*, \phi)/\theta$. And clearly $\mathfrak{A} = F(E, P, \phi)/\theta$. Hence $\mathfrak{A} \in (E, P)$, and $(E, P^*) \subseteq (E, P)$. The converse $(E, P) \subseteq (E, P^*)$ is similarly obtained as mentioned above. Hence $(E, P) = (E, P^*)$.