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31. Divergent Integrals as Viewed from the Theory
of Functional Analysis. II*

By Tadashige ISHIHARA
(Comm. by K. KuNUGI, M.J.A., March 12, 1957)

8§ 6. The examination of analyticity.
We can see after the integration by part that if w(k,s) is an
analytie function of k, v* satisfies —-raﬂv*zo <_8 =}..,<ﬁa__ +7;i>>,
ok ok 2\ Q¢ or
d dv*=0 <A 82+92>
an = o .
6® Ot
However in our space @’ either the equation é%m*zo or Av*=0

can not be a criterion of the analyticity of v* unlikely to the case in
D’. We see this fact easily from the following counter example. If
v=1, both equations hold for v»*, but v»* is not regular at the origin
(Example 2).

As already seen in §3, no function ¢(s,+) of @ has a compact
carrier. However we saw also in §3 that any element ¢ of D, (q, )
can be approximated by {@,;|®,c®@} in the topology S. Hence we
can see that when v(k, s) is an analytic function of k, v* is equivalent
in @ to an analytic function on a compact set L(C D,) if v* is con-
tinuous for such sequence {gojl¢j—§+¢>, @ €D (a,7), p,;€D}.

In the following we see three examples of our divergent integrals
which are the Laplace transforms. Example 1 has no singularity on
its abscissa of convergence. Example 2 has one singular point on its
abscissa of convergence, and Example 3 has its natural boundary on
its abscissa of convergence.

Example 1. f(s)= f “e-F(t)dt where F(t)= —me"sin (me?). This

0
integral diverges on R(s)<0, and ¥*-transform (by Cesaro’s methods
of summation of order k) is convergent on R(s)> —k for arbitrary k [2].
We consider this integral as above, for example for the case k=2.
We take the domain —2+ec<+<<ow, —w<g<+oo, as D,. By
repeated partial integration we see

f(s,t)= f ‘et () dt =1+ e cos (me)+ 8 ¢+ sin (e)
0
—_ sﬁsfl;,l,)ﬁ_,f?gs;l)ﬁe—(s%n cos (Wet)

o

#> T, Ishihara [1].
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ig,(s;{'_l_)_(lsj"g). ~6+2% eog (me™)dr.

The 5th term of the right hand side converges to 0 as t—oo, and
the 2nd and the 3rd terms diverge for R(s)<0.
Now putting s=i(s+1i+) we consider the integral on @(q, r).

(f(s)ypy= <1 — §(sj;ll __.9@il%(s+ 2) f Le“"”)T cos (7re™)dr, ,§0>

+1im, ., v(t, 6),
where

v(t, 0)= <e'” cos (me)+ % e~ “*Digin (mref), (p>

We can see that there exists I such that v(¢,0)e D (t) for all 6.
So we see lim,, vt ¢t)=0 and f(s) is equal to the analytic function

1 S6+1D) _ s(s+1)(s+2) f “e-+9% cos (mev)dr on R(s)>—2, on &.

2 ?
0
We can do similarly for arbitrary k& and see that our integral f(s)
equals the analytic extension on the half plane R(s)<C0.

Example 2. We consider the case v=1, ie. f(s)= [ oc’e"’“ols, on
‘0
D+ <0<ry, —c0<g<-+o. We see that

F) plormy= [ ds [de [Tetre (€, i
s

Here {=o+1iu and the contour I" is the curve shown in the above
figure and @({, ) is the analytic extension of the function (s, ).
We can see that

frpy= [ Cf /‘(’C:_F' 2 @&, 7)dr

+11m],mff (z:“> @&, mdidr < i ),q0>

since the last term tends to 0 as in Example 1.
Now for any element ¢ of ®,(s, +) whose compact carrier L does
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not contain the origin, we take a sequence {¢,} of » which converges
to ¢ in the topology &.
Then we obtain

. —1 . o2 —1 _ —1
tim,. iy =] f dotin PAre= Gy

This shows that v* equals (as the element of S’) the analytic function
—1/ik on L.

Example 3. The Laplace transform f(s)= f 0Qe‘“[l/ 't ]dt, where
0

[ ] means the integral part.

f(s) equals }-Zfale“"ZS, so it has natural boundary on R(s)=0.
s

However even this divergent integral defines a functional on the
half plane R(s)<<0 as the corollary of Theorem 3 shows.

§7. Remarks. ,
To investigate the analytic extension of f(z)= f f(2, 2)d2 men-

tioned in §1, we have another way. That is to say, selecting suitable
functional space @(2), its element (1), @'(2) and T(2, 2)(e @'(2)) having
z as a parameter, we rewrite as follows.

[ 76, aa=(TG, 2), o).

The right hand side of this equation may often be defined and
may be analytic on the larger domain than the left one. Especially
if we can rewrite it, using 7T'(4, z) such that the mapping from the
complex plane to @',z—> T'(4,2) is known to be weakly continuous for
zeD;|J D, we would have already obtained its analytic extension. The
following example shows this case. Substantially this has no more than
classical results, (for example, for the integral representation of I'-
function [3]), but we can see a functional theoretical expression of the
analytic extension on the divergent domain.

Example 4. We consider the Mellin transform f(a)= f mz“'l(ﬂ(z)dz.
0

Here &(t)eS(t) for 0<<t<co. Generally the integral diverges on
R(a)<0. However we rewrite it by f(a)=<(p.f..5n2*"!, @(2)>. Then we
can see f(a) can be analytically extended on the whole a-plane except
a=—m (m is non-negative integer) and is expressed by

i L (T o ides QO PO | %0
f(a’) hmwo{! d)(z)z dz_l_ 2 + z+1 + +k'(z+k)}

Especially in the case &(z)=e¢*, we see an expression of I" func-
tion on R(a)<0.
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