No. 1] 7

2. Notes on Tauberian Theorems for Riemann
Summability. 11

By Kenji YanNo
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(Comm. by Z. SUETUNA, M.J.A., Jan. 12, 1959)

In this note we shall deal with the problem proposed in §12 of
Yano [6]. We prove a theorem (Theorem 1) concerning Riemann
summability by using Lemma 3. Riemann summability of >la, is
closely connected with Cesaro summability of an even function ¢(t)eL
with Fourier coefficients a,. Here we notice that in Riemann sum-
mability a, are independent of Fourier coefficients. Lemma 1 will
interpret the relation between these two summabilities by the help of
Lemmas 2 and 4; — this is a chief object of this paper. In §3 we
shall give “Riemann-Cesaro summability ’—analogue.

1. Riemann summability. A series

e =3a (=0
is said to be summable to sum s by Riemann method of order p, or
briefly summable (R, p) to s, if the series in

F@:i%@EﬂY

v=1 vt

converges in some interval 0<t<t, and F(t)—>s as t—>0 (cf. Ver-
blunsky [1]). Here we suppose that p is a positive integer, and a,
are real throughout this paper.

The n-th Cesaro sum of order r of >a, is

s=314;,0, (— oo <r< o),
vm=(
where A}, is defined by the identity
(L—a) "= 33 Azar (@] <1),

and in particular a,=s;*.
THEOREM 1. Let —1=<b,*® b<p—1<y<p, and 5:.1?;1_’1(,3_7),

B—p+1
If
(L.1) S1st]=o(nr*)
(12) 2182l —s) =001

as m—>oo, then >la, is summable (R, p) to zero.
In the case b=—1 we have the following corollary.

*) We could remove the restriction d=-1 in this theorem by the argument used
in Yano [5].
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COROLLARY 1. Let p—1<y<pand 6=p(B—7)/(B—p+1). If (1.1)
holds and

L2y Sl(la.]-a)=0(m),
then X} a, is summable (R, p) to zero.
This is a theorem due to Kanno [2] when (1.2)" is replaced by
S .]a.|=0(n?), and ¢ is so restricted as 0<o<1.
2. Preliminary lemmas

LEMMA 1. For a series >} a, to be summable (R, p) to sum s, it
is sufficient that

l oo 13 _ ot _§_
(2.1) " Ea,of(t u)?~! cos vu du— » (t—0).

Inversely, the condition (2.1) is necessary when p=<2.
Proof. From Hobson [7, p. 281], we have

p—1 p/2—-1

(sinty=(—174(1 )" S (~17(%) cos @—20t+(5 ) () (. even)

#=0

=(=1ye->2( D)7 (—1y(8)sin (0—20t (1, 0dd).

Replacing t by nt, differentiating with respect to ¢ p-times, and then
dividing both sides by n* we get

(2.2) <—%)p< Sinn"t >p= (—;—)H [(pg/zj (— 1)"(1:,)(104/4)‘” cos (p—2p)nt,

in the unified form. On the other hand, clearly

23 sin nt o-1f @ \P( sinny "d .
(2:3) ( nt > F(p) t"f( " <du>< n ) “
Substituting (2.2) into the integrand of (2.3) we have

(TG 7y 5 e

%[t(t—u)P'l cos (p—2¢) nu du.

Tending ¢ to zero in both sides of (2.4) with n=1, we have the
identity

(2‘5) 1==<%>p_1_l__%p_)[(pg/ﬂ(—1)”(2)(1)-—2#)?%

Now, writing t,.=(p—2)t, (2.4) becomes

(=) "y H -

(t —u)?~* cos nu du.
t,",’ /

Hence, if for each ,u 0,1,---, [(p—1)/2]

13
—t_’;vZa fﬂ(ty—u)P‘lcos Vi du—>—;— (t,~0),
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which is (2.1), then we have

2 sinypt\?_ [ 1\P-t 1 HeRAl (P s

Sa (T2 3) Tw = Y <;e>(p“2”>p‘,; (t=>0).
And the right hand side is s by (2.5). This proves the sufficiency.

The necessity for the case p=2 is evident by the identity (2.4),
since then its right hand side contains one term only. Thus we get
the lemma.

LEMMA 2. Let >0, ¢=0 be arbitrary, and let & be an integer
such as k>sup (1,7—q). Then

(2.6) il a, f t(t—u)r‘ LuF cos vu du=o0(t?+%) ({t—>0)
= 0
implies
) 3
@.7) Sa, f (E—u)™* cos vu du=o(t") (t—0),
- 0

provided that the series in (2.6) converges uniformly in every interval
0<p=t=m.

Of course this lemma holds when 0 <7<t<r is replaced by 0={=<nx.

For the proof we need a lemma.

LemMA 2.1. Let >0, ¢=0 be arbitrary, and let & be an integer
such as k>sup(l,7—¢). Then a necessary and sufficient condition for

[yt du=oer) (t>0)
0
is
[ =y iuto(u) du=o(t) (t—>0),
0
where ¢(t)eL in 0=t=n.
This is Lemma 8 in Yano [6].

Proof of Lemma 2. For any given ¢>0 there corresponds a
number d=4d(¢) such as

oo 1
N a,f (E—u)y~'uf cos vu du‘<et‘“’° (0<t=0),

ve=1l

0
by assuming (2.6). And, by the assumption concerning uniform con-
vergence we have

n 1
Sa, f (t—u)""'u* cos vu dul<29t‘“"
ve=1
0
for 0<7=<t=<d and n=mn, where n,=n,(y). Now putting ¢(#)=>1.,
-a, cos vi, by the sufficiency part of Lemma 2.1 we get

n 13
a, f (t—w)""* cos vu du'<Cst"
PNy

[

for »=<t<6 and m=m, where C is a constant depending on 7, ¢ and
k only (cf. the proof of Lemma 2.1). In particular we have
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@y

=3 ¢
= a,f (t—u)""* cos vu du |[<Cet? (n=t=09),
el

0

which holds clearly for every >0 by the definition of #,., Hence we
see that (2.7)" holds for 0<t=<4, and we get (2.7). This proves the
lemma.

LEMMA 3. Let —1=e¢, b<e<y<fB, r=1+(cf—b)/(f—b+c—7),
and let the series in

G@)= f_] ayft(t—u)“lu’c cos vu du,
v=1
0

where k is an integer such as k>y+1, converge uniformly in some
interval 0=t<\t,. In these circumstances, if

Slsfl=o(n7*) and 3)(|s%|—sH)=0(ne"1)
vem]l ve=n
as n—>oo, then G(t)=o(t"**) as t—>0.

This is Corollary 4.3 in the cited paper [6].
LemmA 4. If r>0 is arbitrary and a+b=[r—0], then

b
f ’(t—u)r—lua<2 sin% u> cos (n+ Ayu+ B) du=0(t**"/n"),
0
A and B being constants, holds uniformly in n and ¢ such as 0<t<x.

This is Lemma 4 in loc. cit. [6].
3. Proof of Theorem 1. By Lemma 1, it is sufficient to show that

(3.1) iav f t(t—u)‘"Jl cos vu du=o0(t?) (t—>0),
- 0
under the conditions in the theorem, i.e.
(L.1) Sh|s2] = o(n7 ),
vl
(12) S (82— ) =0(n?*+1),
where
(8.2) —1=5b, b<p—1<y<p, o=(f—7)(p—1-b)/(f—p+1).

Now, as Lemma 2 in Yano [56] we see that (1.1), (1.2) and (3.2)
imply

(3.3) S1st]=0(n ).

Observing that b=>—1 and >0, clearly (8.8) implies >.,|a, |=0(n’***1),
and then >¥..]a,|r? =0(n’***'-?), which is o(l) as n—>o, since
b+i+1—p=—(p—1-b)(r—p+1)/(f—p+1)<0 by (3.2). In particular
we have

(3.4) ﬁ [a,]/v? < oo.

On the other hand, letting ¢=b+46 and »=1p, the conditions in (3.2)
satisfy those in Lemma 3, i.e.

—1=e, bd<e<y<B, r=1+(cf—bn)/(B—b+ec—7),
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and so by this Lemma 38, (1.1) and (1.2) imply
oo 3
(3.5) S, f (E—w)?~u* cos vu du=o(t"**) (b>7+1),
- 0

provided that the left hand side series converges uniformly in 0=t =<x.
And this assumption is satisfied since

i a, ft(t-—u)f’"‘u"’ cos v du =v§3 |a, |- O@*/v?) < oo,
0

ve=1l

by Lemma 4 and (8.4). Further, (8.5) then implies (3.1) by Lemma 2
with r=q=p. Thus we get the theorem.

4. Riemann-Cesaro summability. A series >l a, is said to be
summable to s by Riemann-Cesaro method of order » and index a,
or briefly summable (R, p, «) to s, if the series in

(4.1) Ft)=(C,.) 't i\ s;‘( sin vt >P,
v=1 vt
where
(F(Of-l-l))"f u? (sinw)?du (—l<a<p—1)
0

Cos=17/2 (a=0, p=1)

1 (a=-1),
converges in some interval 0<t<{?, and
(4.2) lim F(t) =s.

t>0

This summability method has been considered by Hirokawa [3, 4],
and it coincides with summability (R, »p) when a=—1. In particular
the above method is called summability (R,) when a=0.

Remark. The present author suspects that in the above definition
the range of the index a may be extended to —1<a<p when p is
odd, since then the number C,, is defined also for p—1<a<p, the
integral being in Cauchy sense, and moreover it is easily seen that

(4.3) g1 S A;'_1< sin ”t>”—> C,. (t—0),
v=1 vt

similarly as in the cited paper [3].
We may suppose that s=0 in (4.2) with no loss of generality.
We have the following theorem quite analogous to Theorem 1.

THEOREM 2. Let —1=<b, b<p—1<y<pB and 5=-1-’—'11—_—§’—(,8—7).
p—p+1

If

Soist|=o(w*) and 33 (|st|—s)=0(m*o+1)

vl v=n
as m—>oo, then the series > a, is summable (R, p, ) to zero, for
—l=<a<p—((—1)"+1)/2.

Proof. It is sufficient to show that
ge+1 i S:( s Vt>p—>0 (t-—)O),
v=1

vt
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and its proof is, by Lemma 1, reduced to verify

a+l o 3
(4.4) ¢ Shs" f (t—u)*~* cos vu du—>0 t—>0)
tp v=1 A
Further, (4.4) is true by Lemma 2 when
(4.5) % i} % f t(t—u)”"u" cos vu du—>0,
R
0

where % is an integer such as k>p, provided that the series in (4.5)
converges uniformly in every interval 0<n=<<t<r. And the last as-
sumption is satisfied by the permissibility of the succeeding trans-
formation.

Now, using the argument in the proof of Theorem 1 of Yano [5],
(4.5) may be transformed to that in
t¢r+1 =) 3 . 1 ~Ca+1)

Ma, f (t—-u)”“u"(2 smE u)

1
0

TR

4.6
(46) cos (vu—-%(a+1)(u—n)> du—0,

under the assumption in the theorem, not depending on the value of
a. And, (4.6) may be proved quite analogously as
oo 13
4.7 1 Za,f(t—u)"“u"cos vt du—0
1
0

ek T

does, provided that k—a—1=p which is permissible since k£ may be
as large as we wish. But, as it is seen in the proof of Theorem 1,
(4.7) is a result from the assumption in the theorem. Thus we get
the theorem.
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