594 [Vol. 35,

135. Mappings and Pseudo-compact Spaces

By Takesi ISIWATA

Tokyo Gakugei University, Tokyo (Comm. by K. Kunugi, M.J.A., Dec. 12, 1959)

Let f be a mapping of a topological space X onto another topological space Y: then, by Whyburn [1,2], Stone [3], Morita [4-6], Hanai [6-8], McDougle [9,10] and others, it is known that some properties of f, for instance closedness, openness and quasi-compactness, give the interest relations between X and Y.

In this paper, we shall first prove that a space X is pseudo-compact if and only if any continuous mapping of X onto a weakly separable T_2 -space is always a P_0 -mapping. Next we shall show, for a continuous mapping f of a pseudo-compact space X onto a weakly separable T_2 -space, that 1) f is quasi-compact if and only if $f(\mathfrak{B}U)=\mathfrak{B}f(U)$ for any open inverse subset U where $\mathfrak{B}U$ denotes the boundary of U, and 2) if $\mathfrak{B}f^{-1}(y)$ is compact for every $y \in Y$ and X is locally compact, then f is always closed and Y is locally compact. Finally we give some characterization of compact spaces.

In the following, we assume that any mapping is always continuous. Let f be a mapping of X onto Y where X and Y are topological spaces; f is a P_1 (or P_0)-mapping provided that whenever $y \in Y$ and U is any neighborhood of $f^{-1}(y)$, $y \in \text{Int } f(U)$ (or $y \in \text{Int } f(\overline{U})$). f is a P_2 -mapping if for each $y \in Y$, there is a compact subset C of $f^{-1}(y)$ such that $\text{Int } f(U) \ni y$ for every open subset U containing C (the definitions of both P_1 and P_2 -mappings are due to McDougle [9]). f is called to have a compact trace property [2] if any point y of Y is interior of the image of some compact subset of X. The following implications are obvious: $(open \rightarrow P_1)$, $(closed \rightarrow P_1 \rightarrow quasi-compact)$ and $(P_2 \rightarrow P_1 \rightarrow P_0)$.

1. Characterizations of pseudo-compact spaces. The following lemma is useful.

Lemma 1. Let f be a mapping of a topological space X onto a T_2 -space Y. If $\{y_n\} \rightarrow y$ in Y and x_n is any point contained in $f^{-1}(y_n)$, then $\overline{\{x_n\}} - \{x_n\} \ni x$ implies f(x) = y.

Theorem 1. The following conditions are equivalent for a complete regular T_1 -space X;

- 1) X is pseudo-compact.
- 2) Any mapping of X onto a weakly separable T_2 -space is P_0 .
- 3) If f is a mapping of X onto a weakly separable T_2 -space Y, then

 $\overline{f(U)}-f(U)\subset f(\mathfrak{B}U)$ for any open subset U of X.

- 4) Under the same assumption as in (3), $\overline{f(\overline{U})} = f(\overline{U})$ for any open subset U of X.
- 5) Under the same condition as in (3), if a regular open subset U of X contains $f^{-1}(y)$, then Int $f(U)\ni y$.

Proof. $(1\rightarrow 2)$ Let $y\in Y$ and U be any open set containing $f^{-1}(y)$. Suppose that $\operatorname{Int} f(\overline{U}) \not\ni y$. Since U contains $f^{-1}(y)$, there is a sequence $\{y_n\}$ in $Y-f(\overline{U})$ which converges to y. If $f^{-1}(y_n)-\overline{U}\ni x_n$, $\{x_n\}$ has no cluster points. For if x is a cluster point of $\{x_n\}$, $U \supset f^{-1}(y)$ implies $f^{-1}(y) \not\ni x$ and hence $\{f(x_n)(=y_n)\}$ converges to $f(x)(\not\models y)$ which is impossible by Lemma 1. Let $\{V_n\}$ be a base of neighborhoods at the point y such that $V_n \supset \overline{V}_{n+1}$ and $V_n \ni y_m$ for all $m \geqslant n$. Since $\{x_n\}$ is closed and X is regular, we can select a family $\{U_n\}$ of open sets such that $U_n \ni x_n$, $\overline{U}_n \frown \overline{U}_m = \theta$ $(n \not\models m)$, $\overline{U}_n \frown \overline{U} = \theta$ and $f(\overline{U}_n) \subset V_n$. Then the pseudo-compactness of X implies that $\{U_n\}$ is not locally finite (for instance, see [11]). Hence there is at least one point c in $(\bigcup_{n=1}^{\infty} U_n) - \bigcup_{n=1}^{\infty} U_n$. By the method of construction of $\{U_n\}$, we have f(c)=y which contradicts the fact that U is an open set containing $f^-(y)$. This shows that $f^{-1}(y_n) \subset \overline{U}$ and hence $y_n \in f(\overline{U})$ for every n. Thus y must be an interior point of $f(\overline{U})$.

(1 \rightarrow 3) Suppose that $y \in \overline{f(\overline{U})} - f(\overline{U})$ and $f^{-1}(y) \subset X - \overline{U}$. Let $\{y_n\}$ be a sequence in f(U), which converges to y and let $x_n \in f^{-1}(y_n) \cap U$. We select a base $\{V_n\}$ of neighborhoods at y such that $V_n \supset \overline{V}_{n+1}$. Then $\{x_n\}$ is closed because if $\{\overline{x_n}\} - \{x_n\} \ni c$, then $\overline{U} \ni c$ and f(c) = y, that is, $f^{-1}(y) \cap \overline{U} \ne \theta$ which is a contradiction. Let U_n be an open set containing x_n such that $\overline{U}_n \subset U \cap f^{-1}(V_n)$ and $\overline{U}_n \cap \overline{U}_m = \theta$ $(n \ne m)$. Since X is pseudo-compact, $\{U_n\}$ is not locally finite and hence there is a point c in $\{\overline{U}_n\} - \{U_n\}$. By the method of construction of $\{U_n\}$, $f(c) \in V_n$ for every n, and hence f(c) = y. On the other hand, the assumption that $f^{-1}(y) \subset X - \overline{U}$ implies $c \notin f^{-1}(y)$. This is a contradiction. Thus we have $\overline{f(\overline{U})} - f(U) \subset f(\overline{U} - U) = f(\mathfrak{B}U)$.

 $(1\rightarrow 4)$ This follows from $(1\rightarrow 3)$ and the fact that $f(\overline{U})\subset \overline{f(\overline{U})}$.

(1 \rightarrow 5) Suppose that Int $f(U) \ni y$. Then there is a sequence $\{y_n\}$ in Y-f(U) which converges to y. As in the proof of $(1\rightarrow 2)$, $f^{-1}(y_n) \subset \overline{U}-U$, because $f^{-1}(y_n) \cap U=\theta$ for every n. If a point $x_n \in f^{-1}(y_n)$, except with finitely many n, has a neighborhood U_n such that $U_n \cap (X-\overline{U}) \neq \theta$, then $\{U_n \cap (X-\overline{U})\}$ has no cluster points by Lemma 1. But this shows that $\{U_n \cap (X-\overline{U})\}$ is locally finite which contradicts the

pseudo-compactness of X. Thus all points in $f^{-1}(y_n)$, except with finitely many n, have neighborhoods contained in U. This is impossible since U is a regular open subset of X.

(Proofs of reverse implications). Suppose that X is not pseudocompact. Then there is a locally finite family $\{U_n\}$ of disjoint open sets of X. Let f be a non-negative continuous function such that $f\left(X-\bigcup_{n=1}^{\infty}U_n\right)=0$, $f(U_n)\leq n$ and $f(x_n)=n$ for some point $x_n\in U_n$. We construct a space Y, from Z=f(X), with the following topology: a neighborhood U_n of the point 1 is the union of a neighborhood V_n of the point 1 in Z and a set $\{x; f(x)>n\}$ where $V_n=\{z; |z-1|<1/n\}$. Other points have the same neighborhoods as ones in Z. Let h be the identical mapping of Z onto Y. Then g=hf is a mapping of X onto a weakly separable space Y.

Let $U=\{x; x\in X, f(x)<2\}$ and $V=\mathrm{Int}\ (\overline{U})$. It is obvious that U is an open inverse set and V is a regular open subset containing $g^{-1}(1)$. By the methods of construction of Y, g(U) does not contain the point 1 as an inner point. This shows that g is not P_0 which proves $(2\to 1)$. On the other hand, $V\supset g^{-1}(1)$ but $\mathrm{Int}\ g(V)$ does not the point 1 as an inner point. This shows that $(5\to 1)$. As similarly, it is easy to see that $(3\to 1)$ and $(4\to 1)$.

2. Quasi-compact mappings and closed mappings. First we shall prove the following

Theorem 2. Let f be a mapping of a pseudo-compact, completely regular T_1 -space X onto a weakly separable T_2 -space Y. f is quasicompact if and only if $f(\mathfrak{B}U)=\mathfrak{B}f(U)$ for any open inverse subset of X.

Proof. Suppose that f is quasi-compact and U is an open inverse set of X. By Theorem 1 and the openness of f(U), we have $\mathfrak{B}f(U) = \overline{f(U)} - f(U) \subset f(\mathfrak{B}U)$. On the other hand, $f(\overline{U}) \subset \overline{f(U)}$ and hence $f(\overline{U}) - f(U) \subset \overline{f(U)} - f(U)$. Since U is an open inverse set, $f(\overline{U}) = f(\mathfrak{B}U) \subset f(U)$, $f(\mathfrak{B}U) \cap f(U) = \theta$. Thus we have $f(\mathfrak{B}U) \subset \mathfrak{B}f(U)$ and hence we have $f(\mathfrak{B}U) = \mathfrak{B}f(U)$.

Conversely suppose that $f(\mathfrak{B}U)=\mathfrak{B}f(U)$ for any open inverse set U. Since U is an open inverse set, $\overline{U}=U \ \mathfrak{B}U$, $U \cap \mathfrak{B}U=\theta$ and $f(U) \cap f(\mathfrak{B}U)=\theta$. Thus $f(\overline{U})$ is a union of two disjoint sets f(U) and $f(\mathfrak{B}U)$. On the other hand, $\overline{f(\overline{U})}=\mathfrak{B}f(U) \ \mathrm{Int}\ f(U), \ \mathfrak{B}f(U) \cap \mathrm{Int}\ f(U)=\theta$. By Theorem 1, we have $f(\overline{U})=\overline{f(\overline{U})}$, and hence $f(U)=f(\overline{U})-f(\mathfrak{B}U)=\overline{f(\overline{U})}-\mathfrak{B}f(U)=\mathrm{Int}\ f(U)$. This shows that f(U) is open.

In §1 we proved that any mapping of a pseudo-compact space onto

a weakly separable T_2 -space is always a P_0 -mapping. If X is not countably compact, then there is a mapping which is not closed (see §3 below or [11, Theorem 3]). K. Morita has proved that a quasicompact mapping f of a semi-compact T_2 -space X onto a T_2 -space Y is closed if $f^{-1}(y)$ is connected and $\mathfrak{B}f^{-1}(y)$ is compact for every $y \in Y$ [5, Theorem 1 and Remarks]. McDougle [10, Lemma 2] has proved that if a mapping f of a topological space X onto a T_1 -space Y is P_1 and if $\mathfrak{B}f^{-1}(y)$ is compact for each point $y \in Y$, then f is P_2 . Whyburn [2] obtained the result that if X and Y are locally compact separable metric spaces, then f(X) = Y has the property P_2 if and only if every compact set E in Y has a compact trace F, that is, f(F)=E. The proof of this result contains the following results: 1) if X is locally compact and f(X) = Y is P_2 , then any compact set in Y has a compact trace, and 2) if Y is locally compact and f(X) = Y has the property such that any compact set in Y has a compact trace, then f is P_2 . For a pseudo-compact space, we have the following

Theorem 3. Let X be a pseudo-compact completely regular T_1 -space and let f be a mapping of X onto a weakly separable T_2 -space Y. Suppose that $\mathfrak{B}f^{-1}(y)$ is compact for every point $y \in Y$. Then, 1) f is always closed, and 2) if X is locally compact, then Y is locally compact and f is P_2 and moreover f has the compact trace property.

- Proof. 1) Let F be a closed subset of X and $y \in \overline{f(F)} f(F)$. Then there is a sequence $\{y_n\}$ in f(F), which converges to y. Let $x_n \in f^{-1}(y_n) \frown F$. Since X F contains $f^{-1}(y)$, $\{x_n\}$ is closed by Lemma 1. Since $\mathfrak{B} f^{-1}(y)$ is compact, there are disjoint open sets U and V such that $U \supset f^{-1}(y)$ and $V \supset F$. Let $\{V_n\}$ be a family of open sets such that $V_n \ni x_n, \ V \supset V_n, \ f(V_n) \subset W_n \ \text{and} \ \overline{V_n} \frown \overline{V_m} = \theta \ (n \neq m) \ \text{where} \ \{W_n\} \ \text{is a base of neighborhoods at } y$. Since X is pseudo-compact, $\{V_n\}$ is not locally finite and hence $\{\overline{V_n}\} \{V_n\}$ contains a point c. It is easy to see that f(c) = y. But $c \notin f^{-1}(y)$ because $(\overline{\bigcup V_n}) \subset \overline{V} \subset X U$. Thus f must be closed.
- 2) Let y be a point of Y. If $\mathfrak{B}f^{-1}(y)=\theta$, $f^{-1}(y)$ is open and closed. This leads that the point y is an isolated point in Y by the pseudo-compactness and weak separability of Y. Thus we lose no generality by assuming that $\mathfrak{B}f^{-1}(y)$ is not empty. (In the following proof, the pseudo-compactness of X and the weak separability of Y are not used and we use only a local compactness of X and a P_1 -property of mapping.) To prove the theorem, it suffices to show that Y is locally compact. Since $\mathfrak{B}f^{-1}(y)$ is compact, we can select an open covering $\{U_1, \dots, U_n\}$ of $\mathfrak{B}f^{-1}(y)$ such that \overline{U}_i is compact. Thus we have that $A=\mathrm{Int}\left(\bigcup_{i=1}^n U_i\right)^{-1}\mathrm{Int}\left(f^{-1}(y)\right)\ni y$. Since f is P_1 and f(A)

- $\subset f\Big(\bigcup_{i=1}^n U_i\Big)$, we have that $y\in \operatorname{Int}\ f(A)\subset \operatorname{Int}\ f\Big(\bigcup_{i=1}^n U_i\Big)\subset \operatorname{Int}\ f\Big(\bigcup_{i=1}^n \overline{U}_i\Big)$. This shows that y has an arbitrary small compact neighborhoods. Thus Y is locally compact.
- 3. Countably compact spaces and compact spaces. In §1 we obtained a characterization of pseudo-compact spaces. In this section, we shall consider, in the same direction as in §1, a characterization of compact spaces. For countably compact spaces, we have obtained the following theorem [11, Theorem 3]:

a completely regular T_1 -space X is countably compact if and only if any mapping of X onto a weakly separable T_2 -space is always closed.

For compact spaces we have

Theorem 4. The following conditions are equivalent for a completely regular T_1 -space X:

- 1) X is compact;
- 2) any mapping of X onto a weakly separable T_2 -space Y is compact;
- 3) any mapping of X onto a completely regular T_1 -space is P_0 ;
- 4) any mapping of X onto a completely regular T_1 -space is quasicompact.

Proof. $(1\rightarrow 2)$ and $(1\rightarrow 4\rightarrow 3)$ are obvious.

- $(2\rightarrow 1)$ Suppose that X is not compact, that is, there is a point x^* in $\beta X-X$. Let f be a continuous function on βX which vanishes on some neighborhood of x^* . If we put $h=f\mid X$, then $h^{-1}(0)$ is not compact.
- $(3\rightarrow 1)$ Suppose that X is not compact and Y is a space obtained from $X \subseteq \{x^*\}$ by contracting x^* to a fixed point x in X where $x^* \in \beta X X$. Then Y is a one-to-one continuous image of X, we denote by f this mapping. Let U be an open set, in X, containing x such that $\overline{U}(\text{in }\beta X) \ni x^*$. It is obvious that Int $f(U) \ni x$. This shows that f is not P_0 .

References

- [1] G. T. Whyburn: Open and closed mappings, Duke Math. Jour., **17**, 69-74 (1950).
- [2] —: Compactness of certain mappings, Amer. Jour. Math., 81, 306-314 (1959).
- [3] A. H. Stone: Metrizability of decomposition spaces, Proc. Amer. Math. Soc., 7, 690-700 (1956).
- [4] K. Morita: On closed mappings, Proc. Japan Acad., 32, 539-543 (1956).
- [5] —: On closed mappings. II, ibid., **33**, 325-327 (1957).
- [6] K. Morita and S. Hanai: Closed mappings and metric spaces, ibid., 32, 10-14 (1956).
- [7] S. Hanai: On closed mappings. II, ibid., 32, 388-391 (1956).
- [8] —: On open mappings, ibid., 33, 177-180 (1957).
- [9] P. McDougle: A theorem on quasi-compact mappings, Proc. Amer. Math. Soc., 9, 474-477 (1958).
- [10] —: Mapping and space relations, ibid., 10, 320-324 (1959).
- [11] T. Isiwata: Some characterizations of countably compact spaces, Sci. Rep. Tokyo Kyoiku Daigaku, 5, 185-189 (1956).