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24. Further Properties of Reduced Measure-Bend

By Kanesiroo ISEKI
Department of Mathematics, Ochanomizu University, Tokyo
(Comm. by Z. SUETUNA, M.J.A., March 12, 1962)

1. Completion of a previous result. We shall be concerned with
curves defined on the real line R and situated in R™, where we
assume m=2 unless stated otherwise. By sets, by themselves, we
shall understand subsets of R. Continuing our recent note [6], let
us begin with a theorem which completes part (ii) of the theorem
of [5]§3.

THEOREM. Given a curve ¢ and a set E, suppose that 2.(; M)
vanishes for every countable set MCE. Then

Y (p; E)=0.(¢; E)=Q:(¥; E)
Sfor each curve  which coincides on E with ¢.

PrROOF. The lemma and the theorem of [6]§2 require respect-
ively that Y'(¥; E)<Q.(¥; E) and Y (¢; E)=0,(p; E). But our hypo-
thesis on the curve ¢ clearly implies Y (p; E)=1(¥; E). Hence the
result.

REMARK. The above theorem has a counterpart in length theory,
as follows. (The proof is not difficult and may be left to the reader.)

Given a curve ¢ and o set E, suppose that L,(¢; M)=0 holds
Jfor every countable set MCE. Then 5(p; E)=L,(p; B)<L,(y; K) for
each curve ¥ which coincides on E with .

Here the space in which the two curves lie may exceptionally be
of any dimension.

2. Another definition of reduced measure-bend. By the essen-
tial measure-bend of a curve ¢ over a set E, we shall mean the
infimum of the measure-bend 2.(¥; E), where ¥ is any curve which
coincides on E with ¢. The notation Q.(¢; £) will be used for it.
In terms of this quantity we shall now give a second definition to
the notion of reduced measure-bend. Indeed the theorem of [4]§2
has the following analogue.

THEOREM. Given a curve ¢ and a set E, represent E in any
manner as the join of a sequence 4 of subsets and write ¥ (p; E)
for the infimum of the sum Q)(¢; 4). Then Y (¢; E)=1(¢; E).

PROOF. On account of the lemma of [6]§2 we have in the first
place V' (p; B)=7({; B)=0.(¥; E) for every curve ¥ considered above.
It ensues that Y (¢; E)<0,¢; F), where we observe that £ may be
replaced by any other set. Therefore Y (¢; E)<Y (¢; 4)=<0¢; 4) for
every 4, and from this we infer that 7' (p; F)<7Y ,(¢; £). The deduc-
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tion of the converse inequality will thus constitute the main part
of the proof.

Clearly we need only verify the inequality 2 (¢; E)=<Q2(y; 4) for
each 4. Since V(p; )<Y (¢; 4) as we easily find, this will follow
if we show that 2 (¢; X)<Q2(¢; X) for each set X on which ¢ is
straightenable.

Fixing such an X, let us define a set TCR as follows (cf. the
final paragraph of [6]). A point ¢ belongs to T iff ¢ is a point of
accumulation for X and further, given any open interval I contain-
ing t, the curve ¢ is unbounded on the intersection IX. Then T is
a finite set. For, if not, there would exist for each natural number
n a sequence of 2n+1 points ¢, <t,<--.<t,,,, belonging to T. By
definition of T we could then choose in the set X a sequence of n41
points ug, %y,- -+, %, such that w, ,<t,<u; for ¢=1, ..., n. It would
follow at once that if we write K,=[u,_,,%;], then Q(p; K,X)=x
for each <. But this would imply

2p; X)=02(¢p; Ky X)+ -+ - +2(¢; K, X)=nr,
which is impossible since n» is arbitrary.

Let us now decompose the complement of the finite set 7T into
a disjoint finite sequence O of endless intervals. In view of the
obvious inequalities 2 o(¢; X)=<7y(¢; XO) and 0(p; XO)=<2(p; X), our
theorem will be established if we show that 2y (¢; XA)<<0(p; XA)
for each interval A occurring in 6. Representing A as the join of
a non-overlapping sequence @ of closed intervals, we find ¥ (¢; XA)
<Y (p; XO) and Q(¢; XO)<Q(p; XA), so that it is enough to prove
Yo(o; XI)=Q(p; XJ) for each closed interval JCA. But it follows
from the definition of 7', with the help of the Heine-Borel covering
theorem, that ¢ is bounded on Y, where and subsequently Y is short
for XJ. Therefore, on account of the theorem of [5]§1, there is a
straightenable curve o coinciding on Y with ¢. Now it only remains
to ascertain that 7 g(w; Y)<02(w; Y).

Consider the set H of all the points ¢ at which Q.(w;{t})>0.
Then H is countable since o is straightenable. Accordingly 1y(w; HY)
vanishes by definition of 1°;,, and so we find, writing Z=Y—H for
short, that

V(o3 Y)=Y(0; Z)=Q(0; Z)=0Q4(w; Z).
On the other hand, since Q.(w;{t}) plainly vanishes for every tecZ,
the theorem of [6]§2 shows that 2,(w; Z)<Q(0; Z)<Q(w; Y). Hence
we get finally 7y(w; Y)<Q(w; Y), and the proof is complete.

3. A property of locally straightenable curves. Only part (i)
of the following theorem will be necessary for our purpose in hand.
On the other hand, part (ii) extends the proposition of [1]§80 and
is at the same time closely connected with that of [1]§83.



No. 3] Further Properties of Reduced Measure-Bend 107

THEOREM. Let y be a direction curve (defined on R) of a locally
straightenable light curve ¢. Then (i) at each point tye R for which
Q.(¢; {to}) vanishes, the cvrve ¢ has a tangent direction equal to y(t,).
Again, (i) o ¢ is any right-hand [or left-hand] point of continuity
of ¢, the right-hand limit y(c+) [or the left-hand limit y(c—)] exists
and ¢ possesses at ¢ a right-hand [or left-hand] tangent direction
equal to r(c+) [or to r(c—)].

REMARK. See §§44,42,77 of [1] for the terminology.

PROOF. re (i): Given any natural number n we can enclose the
point %,, by hypothesis, in the interior of a closed interval I, such
that Q(¢; I,)<1/n. The curve ¢ being light, we then have ¢(I)==0
for every closed interval ICI, on account of [1]§60. It therefore
follows from [1]§63 that ¢(I,)oe(I)<1/n for such I. Since = is
arbitrary, this implies that ¢ possesses at ¢, a tangent direction,
which must then plainly coincide with r(¢,).

re (ii): To fix the ideas, suppose ¢ right-hand continuous at the
point ¢. In view of §§31-32 of [1] it is easy to associate with each
n=1,2,--. a closed interval J, with left-hand extremity ¢ and such
that Q(¢; J,)<1/n. As above we then find ¢(J)==0 and ¢(J)o¢(J,)
<1/n for each closed interval JCJ,. From this we draw two con-
sequences: firstly, ¢ has at ¢ a right-hand tangent direction ¢%(c)
such that ¢®(c)o¢(J,)<1/n for every n; secondly, we have 7(x)o¢(J,)
=<1/n for each n whenever x is an interior point of J,. So that,
by the triangular inequality (see [1]§22), we obtain y7(x)o¢%(c)<2/n
for such «. Making n—-+ o, we conclude that y(c+) exists and
coincides with ¢®(c). This establishes part (ii).

4. Expression of measure-bend as ordinary and spheric measure-
lengths. This may be stated as follows.

THEOREM. Given a light curve ¢ and a set E of real numbers,
let v be any direction curve (defined on R) of ¢ and suppose that
Q.(p; M) vanishes for every countable subset M of E. Then we have

Ly(r; B)=A44(r; E)=02.(¢; E).

ProoF. We have 4,(r; E)<Q,(¢; E) by the lemma of [5]§3 and
it is obvious that L,(y; E)<A4,(r; ). Hence our theorem will be
established if we derive L,(r; E)=0,(¢; E). Suppose E nonvoid and
let M denote the family of all the open intervals with rational
extremities and on which the curve ¢ is straightenable. Noting
that M is a countably infinite family covering E, we arrange all the
elements of M in any distinet sequence I,,I,--- and write U,
=I~..-~1I, for n=1,2,---. It suffices to prove L.(y; EU,)=
Q.(p; EU,) for each m, since these two quantities tend to the limits
L.(r; E) and 2.(¢; E) respectively as n—>-+o. Now each U, can
clearly be decomposed into a finite disjoint sequence 4, of open
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intervals, so that L.(r; EU,)=L.(7; E4,) and 2.(p; EU,)=0.(¢; E4,).
Accordingly we need only show L, (yr; EI)=0,(¢; EI) for each interval
I in 4, But, since ¢ is light, we have Q(¢; I)=0.(p; I) by the
theorem of [2]83, while Q.(p; I)=<Q.(p;U,)<+ o by definition of
U,. So that ¢ must be straightenable over I.

Arguing now as in §2 we find the existence of a finite disjoint
sequence O of open intervals such that I—[@] is a finite set and that
¢ is bounded on every closed interval contained in [@]. Then
Q.(p; EIN=0,(p; EO) by our hypothesis on the set E; while we
also have L,(r; EI)=L.(r; EO) since, by the lemma of [5]§3 and
the same hypothesis, L,(7;{t}) vanishes whenever tc¢ E. Thus it only
remains to examine the validity of L.(r; F1,)=02.(p; EI) for each
interval I, in ®. By change of parameter, however, this amounts
to proving L,(r; E)=02.(¢; E) under the additional assumption that
¢ is straightenable and locally bounded. Then ¢ is locally rectifiable
in virtue of the lemma of [5]§1.

This being so, consider the set H of all the points of discontinuity
for ¢. Since H is countable, there exists by [1]§94 a non-decreasing
continuous function p(u) mapping R onto itself and such that the
inverse image p~'(t) of a point ¢{¢ R under p is non-degenerate and
hence a closed interval when and only when te H. We now construct
on R a strictly increasing function ¢(¢) as follows. If te R—H, we
understand by g(¢) the point p~*(¢). If on the other hand tcH, we
write p~(t)=[a, b] and c¢=(a+0b)/2, and we define g(¢) to be the point
a,b, or ¢ according as

p(t—)=9(t), o(t+)=e(t), or ¢(t—)=e(t)-Fe(t+)
respectively. (Note that the first two of these three cases exclude
each other on account of discontinuity of ¢ at t¢.)

Without difficulty we then can determine uniquely a light con-
tinuous curve o(u) by the requirements that w(u)=¢(p(u)) for each
ueq[R] and further that o(u) be a linear function of # on each
interval of arbitrary type disjoint from q[R]. As may be verified
at once, we then have Q(w; p '[D])=02(¢; D) for any open set DCR,
and it follows in particular that o is straightenable. It also follows
that Q,(w; {#,})=0 whenever p(u,)eE. Indeed, if K is an open in-
terval containing the point p(u,), then p~![ K] must be an open set
containing #%,, and so

24(0; {u)) =2(w; p' [K])=2(¢; K).
But Q.(¢; {p(u,)})=0 and therefore we can make Q(¢; K) arbitrarily
small by choosing K suitably. Hence the result.

As a consequence we find that Q.(w; N)=0 for every countable
set NCq[E]. This, combined with the theorem of [6]82, shows that
Q4(w; X)=Y(w; X) whenever XCqg[E]. In particular we may take
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for X the set Q=¢[E—H]. Recalling now the definition of the
curve o and noting that ¢ is a strictly increasing funection, we get
immediately Y (w; @) =2 (¢; E,), where E, is short for F-H. But the
theorem of [6]§2, applied this time to the curve ¢, yields us the
equality V' (¢; Eo)=02.(¢; E;). We thus derive Q.(¢; E)=20,(w; Q); for
the set E—FE, is countable as subset of H.

Let n(u) be a fixed right-hand direction curve of o in what
follows. This is plainly feasible since o is light. In view of the rela-
tion 2,(w; N)=0 proved above it follows from part (i) of the theorem
of the foregoing section that, at each point #, of @, the curve o
possesses a tangent direction equal to n(u,). On the other hand ¢
is continuous at all points of K, and so, writing ¢,=p(u,), we readily
see that y(¢,), which is by hypothesis a derived direction of ¢ at ¢,
must also be a derived direction of w at w,. Accordingly r(¢,)=n(u,).
We have thus shown that y(¢)=%(q(¢)) for each teE, As a direct
consequence we find that Z(r; E)=E(r; E))=5(y; Q).

Now A,(p; X)=0,(w; X) for every set XCR (and in particular
for X=Q) by the lemma of [5]§3. But we know already that o is
straightenable and that Q.,(w; N) vanishes for countable sets NCQ.
It ensues that 7 is rectifiable and moreover continuous at all points of
Q, so that we deduce, using the theorem of [3]§4 and the lemma
of [5]§2, that

E(n; Q)=Ly(n; Q=4+ (7; @) =2:(w; Q).
Similarly we get 5(y; E)=L.(7; ). Combining the last two relations
with what has already been proved we are finally lead to Q2.(¢; E)
=L,(r; E), which completes the proof.

5. Expression of reduced measure-bend as reduced measure-
length. We are now prove the following result.

THEOREM. Given a light curve ¢ and a set E, let y be any
direction curve (on R) of ¢ and suppose that Q.(¢;{t}) is finite for
every point t of E. (The latter condition is certainly fulfilled when
¢ 18 locally straightenable.) Then we have E(r; E)=1 (p; E).

ProOOF. Assuming FE nonvoid as we may, we define for each
n=1,2,--. an open set U, of real numbers in exactly the same way
as at the beginning of the foregoing proof. Then, since 5 and 7" are
both outer Carathéodory measures, 5Z(7; EU,) and Y (¢; EU,) tend as
n—>-+oo to the respective limits Z(r; £) and Y (¢; E). Consequently
it is enough to prove E(r; EU,)=7(¢; EU,) for each n.

The inequality Q.(¢; U,)=<Q(¢; L)+ - - - +2(¢; I,), where the inter-
vals I, I,,- -+ mean the same things as in §4, implies that 2.(¢; U,)
<4 oo. If, therefore, we write K, for the set of the points ¢ of
EU, such that Q.(y; {t})=0, it is obvious that EU,— K, is countable.
It follows at once that Z(y; EU,)=E(r; K,) and Y(¢; EU,)=1(¢; K,).
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Now Y (¢; K,)=0,(¢; K,) by the theorem of [6]§2, while Z(1; K,)
=L,(r; K,) by the remark of §1 and the lemma of [5]8§3. Thus the
proof reduces to showing L,(7; K,)=0.(p; K,). But this certainly
holds in virtue of the preceding theorem.

6. Supplement. In connection with part (ii) of the theorem
of §3 we can state the following result, the proof of which will be
given in our forthcoming note.

THEOREM. A light curve ¢ 1is spherically representable on both
sides (see [11§77) provided that it is locally stratghtenable.
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