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24. Further Properties of Reduced Measure.Bend

By Kanesiroo ISEKI
Department of Mathematics, Ochanomizu University, Tokyo

(Comm. by Z. SUETUNA, M.J.A.., March 12, 1962)

1. Completion of a previous result. We shall be concerned with
curves defined on the real line R and situated in R, where we
assume m:>2 unless stated otherwise. By sets, by themselves, we
shall understand subsets of R. Continuing our recent note 6, let
us begin with a theorem which completes part (ii) of the theorem
o 5_3.

THEOREM. Given a curve 9 and a set E, suppose that /2.(9; M)
vanishes for every countable set McE. Then

’(9; E)--?,(9; E)2,(@; E)
for each curve which coincides on E with 9.

PROOF. The lemma and the theorem of 62 require respect-
ively that )’(@; E)t9,(@; E) and /’(9; E)-/2,(9; E). But our hypo-
thesis on the curve @ clearly implies ’(9; E)--’(@; E). Hence the
result.

REMARK. The above theorem has a counterpart in length theory,
as follows. (The proof is not difficult and may be left to the reader.)

Given a curve 9 and a set E, suppose that L,(9; M)O holds
for every countable set McE. Then (9; E)--L,(9; E)L,(@; E) for
each curve which coincides on E with 9.

Here the space in which the two curves lie may exceptionally be
of any dimension.

2. Another definition of reduced measure.bend. By the essen-
tial measure-bend of a curve over a set E, we shall mean the
infimum of the measure-bend /2,(@; E), where @ is any curve which
coincides on E with . The notation /20(; E) will be used for it.
In terms of this quantity we shall now give a second definition to
the notion of reduced measure-bend. Indeed the theorem of 42
has the following analogue.

THEOREM. Given a curve 9 and a set E, represent E in any
manner as the join of a sequence d of subsets and write o(9; E)
for the infimum of the sum t?0(9; d). Then ’o(9; E)--)’(9; E).

PROOF. On account of the lemma of [62 we have in the first
place/’(9; E)--’(; E)t?,(; E) for every curve considered above.
It ensues that ’(9; E)/20(9; E), where we observe that E may be
replaced by any other set. Therefore ’(9; E)’(9; d)/20(9; d) for
every d, and from this we infer that F(9; E)/’0(9; E). The deduc-
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tion of the converse inequality will thus constitute the main part
of the proof.

Clearly we need only verify the inequality 0(; E)t((?; /)for
each . Since ’o(; E))’o(; /) as we easily find, this will follow
if we show that o(;X)9(;X) for each set X on which is
straightenable.

Fixing such an X, let us define a set TR as follows (cf. the
final paragraph of [6). A point t belongs to T iff t is a point of
accumulation for X and further, given any open interval I contain-
ing t, the curve is unbounded on the intersection IX. Then T is
a finite set. For, if not, there would exist for each natural number
n a sequence of 2n+1 points tt... ten+ belonging to T. By
definition of T we could then choose in the set X a sequence of n+l
points Uo, u,. ., u such that u_<t<u for i- 1, ., n. It would
follow at once that if we write K--[u_,u, then
for each i. But this would imply

tg(; X):>Y2(; KX)-k... q-/2(; KX)nz,
which is impossible since n is arbitrary.

Let us now decompose the complement of the finite set T into
a disjoint finite sequence 0 of endless intervals. In view of the
obvious inequalities 0(; X)o(; X6) and 2((?; X9)/2(; X), our
theorem will be established if we show that )’o(;XA)f2(;XA)
for each interval A occurring in . Representing A as the join of
a non-overlapping sequence of closed intervals, we find ’o((; XA)
)’o(;XO) and 9(;X)tg(;XA), so that it is enough to prove
’o(; XJ)9(; XJ) for each closed interval JA. But it follows
from the definition of T, with the help of the Heine-Borel covering
theorem, that is bounded on Y, where and subsequently Y is short
for XJ. Therefore, on account of the theorem of [51, there is a
straightenable curve o coinciding on Y with (?. Now it only remains
to ascertain that eo(O; Y)D(o; Y).

Consider the set H of all the points t at which 9.(w; {t})>0.
Then H is countable since o is straightenable. Accordingly 2"o(w; HY)
vanishes by definition of 2"0, and so we find, writing Z= Y--H for
short, that

’o(O,; Y)-2"o(w; Z)90(w; Z)tg.(w; Z).
On the other hand, since /2.(w; {t}) plainly vanishes for every teZ,
the theorem of [6J2 shows that 9.(w; Z)2(w; Z)/2(w; Y). Hence
we get finally 2"0(w; Y)t2(w; Y), and the proof is complete.

:3. A property of locall straightenable curves. 0nly part (i)
of the following theorem will be necessary for our purpose in hand.
On the other hand, part (ii) extends the proposition of [180 and
is at the same time closely connected with that of 183.
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THEOREM. Let be a direction curve (defined on R)of a locally
straightenable light curve . Then (i) at each point to eR for which
9,(; {to}) vanishes, the cvrve has a tangent direction equal to r(to).
Again, (ii) if c is any right-hand [or left-hand point of continuity
of , the right-hand limit r(c+) [or the left-hand limit r(c--) exists
and possesses at c a right-hand [or left-hand tangent direction
equal to (c--) or to ’(c--).

REMARK. See 44,42,77 of [1 for the terminology.
PROOF. re (i)" Given any natural number n we can enclose the

point to, by hypothesis, in the interior of a closed interval I such
that 9(; I)<l/n. The curve being light, we then have (I)0
for every closed interval II on account of [160. It therefore
follows from [163 that (I)(I)<l/n for such L Since n is
arbitrary, this implies that possesses at to a tangent direction,
which must then plainly coincide with (t0).

re (ii): To fix the ideas, suppose right-hand continuous at the
point c. In view of 31-32 of [1 it is easy to associate with each
n--l, 2,... a closed interval J with left-hand extremity c and such
that 9(;J)<l/n. As above we then find (J)0 and (J)(J)
<l/n for each closed interval JJ. From this we draw two con-
sequences" firstly, has at c a right-hand tangent direction (c)
such that (c)(J)l/n for every n; secondly, we have (x)(J)
l/n for each n whenever x is an interior point of J. So that,
by the triangular inequality (see [1]22), we obtain ’(x)(c)2/n
for such x. Making n-->+, we conclude that (c+) exists and
coincides with (c). This establishes part (ii).

4. Expression of measure.bend as ordinary and spheric measure.
lengths. This may be saed as ollows.

THEOREM. Given a light curve and a set E of real numbers,
let y be any direction curve (defined on R) of and suppose that
/2,(F; M) vanishes for every countable subset M of E. Then we have

L,(; E) /, (r; E) 9,(; E).
PROOF. We have /,(r; E)tg,(; E) by the lemma of [53 and

it is obvious that L,(r; E)/,(r; E). Hence our theorem will be
established if we derive L,(r; E)--9,(; E). Suppose E nonvoid and
let denote the family of all the open intervals with rational
extremities and on which the curve is straightenable. Noting
that 9 is a countably infinite family covering E, we arrange all the
elements of ) in any distinct sequence I,I,... and write U
=I...I for n=1,2,.... It suffices to prove L.(;EU)--
,((; EUn) or each n, since these two quantities tend to the limits
L.(;E) and 9.(;E) respectively as n-q-. Now each U can
clearly be decomposed into a finite disjoint sequence z/ of open
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intervals, so that L,(’; EUn)--L,(’; Eln) and/2,(; EU)=/2,(; En).
Accordingly we need only show L,(; EI)=9,(; EI) for each interval
I in n. But, since is light, we have 9(;I)=/2,(;I) by the
theorem of [23, while /2,(; I)2,(; U)+ by definition of
U. So that must be straightenable over L

Arguing now as in 2 we find the existence of a finite disjoint
sequence 0 of open intervals such that I--[9 is a finite set and that

is bounded on every closed interval contained in [tg. Then
/2,(; EI) 9,(; E0) by our hypothesis, on the set E; while we
also have L,(;EI)=L,(;E) since, by the lemma of [53 and
the same hypothesis, L,(; It}) vanishes whenever teE. Thus it only
remains to examine the validity of L,(; EIo)=9,(;EIo)for each
interval I0 in 0. By change of parameter, however, this amounts
to proving L,(y; E)=/2,(; E) under the additional assumption that

is straightenable and locally bounded. Then is locally rectifiable
in virtue of the lemma of [5]1.

This being so, consider the set/.-I of all the points of discontinuity
for F. Since His countable, there exists by [1]94 a non-decreasing
continuous function p(u)mapping R onto itself and such that the
inverse image p-(t) of a point tR under p is non-degenerate and
hence a closed interval when and only when t e H. We now construct
on R a strictly increasing function q(t) as follows. If t eR--H, we
understand by q(t) the point p-(t). If on the other hand teH, we
write p-(t)=[a, b] and c=(a+b)/2, and we define q(t) to be the point
a, b, or c according as

(t-)=(t), (t+)=(t), or (t-)(t)(t+)
respectively. (Note that the first two of these three cases exclude
each other on account of discontinuity of at t.)

Without difficulty we then can determine uniquely a light con-
tinuous curve w(u) by the requirements that o(u)=(p(u)) for each
ueq[R and further that (o(u) be a linear function of u on each
interval of arbitrary type disjoint from q[R. As may be verified
at once, we then have 9((0; p-[D)=tg(; D) or any open set DR,
and it follows in particular that o is straightenable. It also follows
that 9,((0; [u0})=0 whenever p(Uo)eE. Indeed, if K is an open in-
terval containing the point p(Uo), then p-[K must be an open set
containing uo, and so

K).
But /2,(; {p(Uo)})=0 and therefore we can make /2(; K) arbitrarily
small by choosing K suitably. Hence the result.

As a consequence we find that /2,(w; N)=0 for every countable
set NqE. This, combined with the theorem of 62, shows that
t0,(w; X) l’(w; X) whenever Xq[E. In particular we may take
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for X the set Q--q[E--H. Recalling now the definition of the
curve w and noting that q is a strictly increasing function, we get
immediately i(w; Q)-i(; E0), where E0 is short for E-H. But the
theorem of [62, applied this time to the curve , yields us the
equality i((; E0)--9,(; Eo). We thus derive 9,(; E)--9,(w; Q); for
the set E--Eo is countable as subset of H.

Let ](u) be a fixed right-hand direction curve of w in what
iollows. This is plainly feasible since w is light. In view of the rela-
tion /2,(w; N)-0 proved above it follows from part (i) of the theorem
of the foregoing section that, at each point u,_ of Q, the curve w

possesses a tangent direction equal to ](u). On the other hand
is continuous at all points of E0 and so, writing t-p(u), we readily
see that (t), which is by hypothesis a derived direction oi at t,
must also be a derived direction of w at u. Accordingly (t)-V(u).
We have thus shown that (t)-(q(t)) for each t eEo. As a direct
consequence we find that (; E)-(; E0)--(]; Q).

Now //,(]; X)-Y2,(w; X) for every set XR (and in particular
for X=Q) by the lemma of [53. But we know already that w is
straightenable and that tg,(w;N) vanishes for countable sets NQ.
It ensues that ] is rectifiable and moreover continuous at all points of
Q, so that we deduce, using the theorem of [34 and the lemma
of 52, that

Z(]; Q)-L,(]; Q)-A,(]; V)-tg,(w; V).
Similarly we get (7; E)--L,(7; E). Combining the last two relations
with what has already been proved we are finally lead to 9,((; E)
=L,(7; E), which completes the proof.

5. Expression of reduced measure.bend as reduced measure.
length. We are now prove he following result.

THEOREM. Given a light curve and a set E, let be any
direction curve (on R) of and suppose that tg,((; [t]) is finite for
every point t of E. (The latter condition is certainly fulfilled when

is locally straightenable.) Then we have (7; E)--(; E).
PROOF. Assuming E nonvoid as we may, we define ior each

n--l, 2,... an open set U of real numbers in exactly the same way
as at the beginning of the foregoing proof. Then, since and are
both outer Carath6odory measures, (; EU) and Y((; EU) tend as
n-+/ to the respective limits (; E) and T(V; E). Consequently
it is enough to prove (7; EU)--(; EU) for each n.

The inequality 9,(; U)___<9(;/) +... +/2((; I), where the inter-
vals /, I,... mean the same things as in 4, implies that 9,(V; U)
</. If, therefore, we write Kn for the set of the points t of
EU such that 9,(V; It})--0, it is obvious that EU--Kn is countable.
It iollows at once that (; EU)--(; K) and ((Z; EUn)--’(; Kn).
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Now /’(; Kn)--9,(; Kn) by the theorem of [6]2, while Z(y; K,)
--L,(y; K) by the remark of 1 and the lemma of [53. Th.s the
proof reduces to showing L,(7; K)--/2,(; K). But this certainly
holds in virtue of the preceding theorem.

6. Supplement. In connection with part (ii) of the theorem
of 3 we can state the following result, the proof of which will be
given in our forthcoming note.

THEOREM. A light curve is spherically representable on both
sides (see _1]77) provided that it is locally straightenable.
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