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1. Euler and circle methods of summability of Fourier series.
Here the author wishes to discuss the circle method o summability
and other quasi-Hausdorff methods of summability o Fourier series.
At the beginning we remember the Euler method of summability.
It associates with a given sequence [s,] the means

a,,--a-- r"(1--r)-s, n--0, 1, 2,...
0

where r is a constant which satisfies 0rl. We denote this method
as (, r). The case r--1 corresponds to ordinary convergence. The
Lebesgue constants for this method of Fourier series are given by
L. Lorch [1 and A. E. Livingston [2.

Theorem 1. The Lebesgue constants for the (, r) method are
given by

2 log 2nrL(n;r) 1At +A+o(1), as n, where

C i the Ner-Maeheoi

he Gibbs henomenon of the Pourier series sin t for this
=1

method are investigated by 0. Ss

Theorem 2. If e pt 0-0, = sin t, the e have
=1

(t)_- sin g, a tr ag t0.lira

0n the other hand the eirele method of summability associates
with a given sequence {} the means

a,,*--a3-[)nr x(1--r)-s, n--0,1,2,...

where r is a constant which satisfies 0rl. The case r--1 corre-
sponds to ordinary convergence. We denote this method as (, r).
The Lebesgue constants for this method of Fourier series are given
by the author [4.

Theorem 3. The Lebesgue constants for the (, r) method are
given by
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where A is the same constant as before.
The Gibbs phenomenon of the Fourier series sin nt for this

=I n
method are given by the author

Theorem 4. If we put {sn} as in Theorem 2, then we have

lira a*,(tn)-- sin y dy, as nt-r and nt,-->O.

Here we see the relation between the (s, r)method and the (, r)
method. If we replace r in the Lebesgue constants and the Gibbs phe-

nomenon for the (, r) method by 1, then we get the same constants

and the same phenomenon for the (r, ) method, i.e. L ; --L*(; r)
+o(1) and so on.

We can see that the transformation matrix of the (s, r)mehod
is given by

1 0 0 0
1--r r 0 0

(l--r) ()r(1--r) ()r(1-r) r

0

r(1 -r)

0

0

Similarly the transformation matrix of the (7, r) method is given by

r(1-- r) r(1-- r)

()r2(1--r) (13)r(1-- r)

Between the transformation matrix E of the (z, r) method and
the transformation matrix Fr of the (T, r) method we see the relation
Fr--rE*, where E* is the transposed matrix of Er. The close relations
between the (s, r) method and the (, r) method are investigated by
W. Meyer-KSnig [6, J. Taghem [7, P. Vermes [8 and so on.

2. Hausdorff and quasi.Hausdorff methods of summability of
Fourier series. We ean understand he Euler meh0d as a special
case o the Hausdorff method o summability. We define the Haus-
dorf means of a given sequence {s} by

L*(n;r)-- 2 log 2n -I+A+o(1), as n->,
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h.-- s (1-.r) d(r), n-O, 1, 2,...

where (r) is of bounded variation in 0_r_l. This transformation
is regular if, and only if,

g(f)=(1)--(0) 1

and (f) is continuous at f-0, [9. If we choose
0 for 0N<()- 1 for NN1,

then the Hausdorff means reduce o the Nuler means. Por the
Hausdorff means we know the 8s theorem [10.

Theorem 5. If we put so--O and s-- sint, then
=I

lim h(tn)-- sin ry dy d(r), as ntr ( ).

0n the other hand L. Lorch and D. J. Newman [11 proved
Theorem. 6. Let L(n; ) denote the nth Lebesgue constant for

the regular Haudorff method with weight function (t). Then
L(n; )-C() log n+0(log n), as n, where
C()-(2/=) (1)--(1-) +

+(1/z){ [(+)--(--) sin x ]}.

Here is the kth discontinuity (jump) of (t) and the summation
extends over all such (possibly countably infinite) values; [f(x)}
represents, as usual, the mean value of the almost periodic function
f(x). Furthermore the error term o(logn) is "best possible" and
cannot be improved even for the case of an increasing absolutely
continuous (t).

As is well known G. H. Hardy summarized the Hausdorff method
of summability in his book "Divergent series". M.S. Ramanujan
studied the quasi-Hausdorff method of summability in complete detail
similarly as Hardy did. (See [12, 13, 14.) Consequently we can deal
with these two methods as a pair. We define the quasi-Hausdorff
means of a given sequence {s} by

h- *(1-)-’(), -0, 1,,...

where (r) is of bounded variation in 0NN1. his transformation
is regular if and only if

g() (1)--(0) 1. (See [12.)

We ean understand the circle method as a seeial ease of the quasi-
Hausdorff method. As O. Szs generalized heorem 2 and got
Theorem g, we can expect to generalize Theorem and to get



No. 6:] On Circle and Quasi-Hausdorff Methods of Summability 275

Theorem 7. If we put so--O and s-- sin,t then we have
=1

h., (t)_[[ sin y/r dydq(r), as nt.lim

Similarly we can expect to get the theorem about the Lebesgue
constants for the quasi-Hausdorff method.. Problems. The relations between Hausdorff and quasi-
Hausdorff methods of summability for a same weight function (r)
are very interesting. We can suppose these two methods as a dual
or a conjugate of each other. We shall introduce here several problems.

Problem 1. If we put (u)=l-(1-u) in the definition of the
Hausdorff method, then we get the Cesro (C, p) method. For the
same weight function (u) in the definition of the quasi-Hausdorff
method we get the (C*, p) method. B. Kuttner gave the relations
between (C, p) and (C*, p) methods. (See 15.)

Theorem 8. The proposition (C, p) implies (C*, p)is false when
0p2, p:l, but is true when p--1 or p=2.

Theorem 9. If pO (p an integer), then (C*, p) implies (C, p).
We do not know whether or not (C*, p) implies (C, p) when p is

not an integer. Here we denote "method A implies method B" when
any sequence summable A is summable B to the same sum. For the
(C, p) means we know the Cramr theorem about the Gibbs phe-

nomenon of the Fourier series sin nt. (See [16.)

Theorem 10. There exists a number Po, Opol, with the

following property: The (C, p) means of sin nt present the Gibbs

phenomenon at t=0 for PPo, but not for PPo.
Is the similar result true or not for the (C*, p) means?

Problem 2. When series a andb are given, then we denote
0 0

c,= ab, p=0, 1,2,...

and we say c as the Cauchy product series of an and b.
p=0 =0 =0

Concerning the Cauchy product series we know the classical Abel,
Mertens and Cauchy theorems. For the Euler method of summability
of this series K. Knopp proved the theorems of Abel’s and Mertens’
types, see [17, and H. Hara proved the theorem of Cauchy’s type,
see [18. We can prove also the theorems of these three types for
the circle method, see [19.

When a series a is given, let s, n--0, 1,2,... be the partial
=0

sums of this series. If the sequence [s} is summable to A by the
(y,r) method, then we say an=A(y,r). This is the same with
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a* A, where
--0

a*- -(1-f)-a, -0, 1,2,.... (See

If a eonverges absolutely to A, then we say

Then we can rove the following theorems.
Theorem 11. If -A(r, ), b-B(r, ) e-- C(r, ),

the AB-- C.
Theorem 12. If -A r, b B(r, ), the

=C(r, ) C=AB.
Theorem 13. If a--A(Ir, r) and b--B([r,r]), then c

=C( y, r and C=AB.
Here we meet the following problems. For the regular Hausdorff

and the regular quasi-Hausdorff means are the theorems of these
three types true or not?

Problem 3. It seems to the author that the Hausdorff and the
quasi-Hausdorff methods of summability are the most fundamental
among the various methods of summability such as the elementary
particles in theoretical physics. So we might be able to represent a
known method as a combination of these two methods, product and
so on. This problem is too vague, but if we can prove this it shall
be very interesting.

I wish to express my most cordial thanks to Professor Raphael
Salem for his kindness in reading the note and encouraging me with
the warmest heart. I am much indebted also to Professor Kinjiro
Kunugi for his long warmest guidances.
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