468 [Vol. 38,

## 105. Relations among Topologies on Riemann Surfaces. IV

## By Zenjiro KURAMOCHI

Mathematical Institute, Hokkaido University (Comm. by K. Kunugi, M.J.A., Oct. 12, 1962)

Example 4. Let  $\Re$  be a circle |z+1|<1. Let  $R_n$  be a domain such that  $R_n$ :  $\frac{1}{2^n} \ge |z| \ge \frac{1}{2^{n+1}}$ ,  $|\arg z| \le \frac{\pi}{16}$  and put  $\sum_{n=1}^{\infty} R_n = R$  and  $D = \Re - R$ . Domain  $\mathfrak{D}$ . Let  $\Lambda_n$  and  $\Gamma_n$  be domains as follows:

$$A_n: rac{1}{2^{n+1}} + a_n > |z| > rac{1}{2^n} ext{ and } a_n < rac{1}{3 imes 2^{n+1}}, ext{ } |\arg z| < rac{\pi}{16},$$
  $\Gamma_n: rac{1}{2} \Big(rac{1}{2^n} + rac{1}{2^{n+1}}\Big) \geqq |z| \geqq rac{1}{2} \Big(rac{1}{2^{n+1}} + rac{1}{2^{n+2}}\Big), ext{ } |\arg z| \leqq rac{\pi}{8},$ 

where  $a_n$  will be determined. Then  $\Gamma_n \supset \Lambda_n$  and dist  $(\partial \Gamma_n, \Lambda_n) > 0$ . Let  $G(z, p_0, \Re)$  be the Green's function of  $\Re$ , where  $p_0 = -\frac{3}{2}$ . Put  $M_n = \max G(z, p_0, \Re)$  on  $\partial R_n + \partial R_{n+1}$ . Let  $w(z, \Lambda_n, D)$  be the harmonic measure of  $\Lambda_n - D$  relative to D. Now D is simply connected and dist  $(\partial \Gamma_n, \Lambda_n) > 0$ . Hence by Lemma 3 or 5 we can find a constant  $a_n$  such that

$$M_n w(z, \Lambda_n, D) \leq \frac{1}{\Lambda^n} G(z, p_0, D)$$
 on  $\partial \Gamma_n$ . (15)

We suppose  $a_n$  is defined as above. Put  $\mathfrak{D}=\mathfrak{R}-R+\sum\limits_{n=1}^{\infty}\varLambda_n$ . Now  $M_nw(z,\varLambda_n,D)=0=rac{1}{4^n}G(z,\,p_0,\,D)$  on  $\partial D-\varGamma_n$ . Hence by the maximum principle  $M_nw(z,\varLambda_n,\,D)\leqqrac{1}{4^n}G(z,\,p_0,\,D)$  in  $D-\varGamma_n$ . By  $M_n\geqq G(z,\,p_0,\,\mathfrak{R})$   $\geqq G(z,\,p_0,\,\mathfrak{D})$  on  $\partial \varLambda_n$  we have  $M_n\geqq M_nw(z,\varLambda_n,\,D)+G(z,\,p_0,\,D)\geqq G(z,\,p_0,\,\mathfrak{D})$ 



Fig. 7

on  $\partial D \cap \partial \Lambda_n$ . Now  $M_n w(z, \Lambda_n, D) + G(z, p_0, D) = G(z, p_0, \mathfrak{D}) = 0$  on  $\partial D - \partial \Lambda_{n^*}$ . Hence by the maximum principle  $\sum_{n=1}^{\infty} M_n w(z, \Lambda_n, D) + G(z, p_0, D) \ge G(z, p_0, \mathfrak{D}) \ge G(z, p_0, D)$  in D and by (14)

$$\left(1 + \sum_{n=1}^{\infty} \frac{1}{4^n}\right) G(z, p_0, D) \ge G(z, p_0, D) \ge G(z, p_0, D) \text{ in } D - \sum_{n=1}^{\infty} \Gamma_n.$$
 (16)

Let  $\{p_n^i\}$   $(i=1,2, \text{ and } n=1,2,3,\cdots)$  be a sequence such that  $p_n^i:|z|=\frac{1}{2^n}$ ,  $\arg z=\frac{\pi}{4}$  for i=1 and  $-\frac{\pi}{4}$  for i=2. Clearly  $\{p_n^1\}$  in D determines different K-Martin's point from that of  $\{p_n^2\}$ , i.e.  $\lim_n K(z,\{p_n^1\},D)$  and  $\lim_n K(z,\{p_n^2\},D)$  are linearly independent. Now  $p_n^i\in D$   $-\sum_{n=1}^{\infty}\Gamma_n$ . Let  $\{p_n^i\}$  be a subsequence of  $\{p_n^i\}$  such that  $\{p_n^i\}$  determine K-Martins point relative to  $\mathfrak{D}$ . Then by (16) and by Lemma 8  $e_x(\lim_{n'}K(z,\{p_{n'}^i\},D))$  (from D to  $\mathfrak{D}$  relative to  $\{v_n\})>\infty$ . Where  $v_n=E\Big[z:|z|<\frac{1}{2^n}\Big]$ . Thus we have

Proposition 1. There exist at least two K-Martin's points of  $\mathfrak{D}$  on z=0.

Domain  $\Omega$ . Let  $\Gamma'_n$  and  $T_n$   $(n=1,2,3,\cdots)$  be a domain and a system of circular slits:  $T_n = \sum_i t_n^i$  in  $R_n$  as follows:

$$\Gamma'_n: \frac{1}{2^n} + \frac{a_{n-1}}{2} \ge |z| \ge \frac{1}{2^{n+1}} + \frac{a_n}{2}, \quad |\arg z| \le \frac{\pi}{8}.$$

 $T_n$  is contained in  $R'_n = R_n - \Lambda_n$  and

$$t_n^i: |z| = \frac{1}{2} - \left(\frac{1}{2^{n+1}} - a_n\right) \frac{(i-1)}{k}, |\arg z| < \frac{\pi}{16}, i = 1, 2, \dots k+1.$$

Since dist  $(\partial \Gamma'_n, \partial \mathfrak{D}) > 0$ ,  $\min_{z \in \partial \Gamma'_n} G(z, p_0, \mathfrak{D}) > 0$ . Now  $G^{T_n}(z, p_0, \mathfrak{R}) \to G^{R'_n}(z, p_0, \mathfrak{R})$  uniformly on  $\partial \Gamma'_n$  as  $k(n) \to \infty$ . Hence there exists a number k(n) such that

$$G^{T_n}(z, p_0, \Re) - G^{R_n}(z, p_0, \Re) \leq \frac{1}{5^n} G(z, p_0, \Im) \text{ on } \partial \Gamma_n'.$$
 (17)

We suppose  $T_n$  is defined for every n. Put  $\Omega=\Re-\sum\limits_{n=1}^{\infty}R'_n+\sum\limits_{n=1}^{\infty}(R'_n-T_n)$ . By  $\Re\supset\Omega\supset\mathfrak{D}$  and by Lemma 4 and by (17) we have  $\frac{1}{5^n}G(z,p_0,\Omega)\geq \frac{1}{5^n}G(z,p_0,\mathfrak{D})\geq G^{T_n}(z,p_0,\mathfrak{R})-G^{R'_n}(z,p_0,\mathfrak{R})\geq G^{T_n}(z,p_0,\Omega)-G^{R'_n}(z,p_0,\Omega)$  on  $\partial\Gamma'_n$ . On the other hand,  $\frac{1}{5^n}G(z,p_0,\Omega)=0=G^{T_n}(z,p_0,\Omega)-G^{R'_n}(z,p_0,\Omega)$  on  $\partial\Omega-\Gamma'_n$ . Hence by the maximum principle

$$G^{T_n}(z, p_0, \Omega) - G^{R'_n}(z, p_0, \Omega) \leq \frac{1}{5^n} G(z, p_0, \Omega) \text{ in } \Omega - \Gamma'_n.$$

Next by  $T_n \subset \partial \Omega$   $G^{T_n}(z, p_0, \Omega) = G^{\sum T_n}(z, p_0, \Omega) = G(z, p_0, \Omega)$  and  $G^{\sum R'_n}(z, p_0, \Omega) = G(z, p_0, \Omega - \sum R'_n) = G(z, p_0, \mathfrak{D})$ . Hence by Lemma 4,  $G(z, p_0, \Omega) = G(z, p_0, \mathfrak{D}) \leq \sum (G^{T_n}(z, p_0, \Omega) - G^{R'_n}(z, p_0, \Omega)) \leq \sum \frac{1}{5^n} G(z, p_0, \Omega)$  in  $\Omega - \sum \Gamma'_n$ . Now  $p_n^i \in \Omega - \sum \Gamma'_n$  and we have  $G(p_n^i, p_0, \Omega) \leq \frac{5}{4} G(p_n^i, p_0, \mathfrak{D})$ . Hence  $e_x(\lim_n K(z, p_n^i, \mathfrak{D}))$  (from  $\mathfrak{D}$  relative to  $\Omega$ )  $< \infty$ . Hence by Proposition 1 and by Lemma 8 we have

Proposion 2. There exist at least two K-Martin's points of  $\Omega$  on z=0.

We show that there exists only one N-Martin's point of  $\mathcal Q$  on z=0. Let  $\mathcal Q'=\mathcal Q-D_0$ ,  $D_0=E\Big[z: \Big|z+\frac12\Big|<\frac14\Big]$ . Consider N(z,p) of  $\mathcal Q'$ . Let U(z) be a harmonic function in a domain  $G_r$ ,  $G_r=E[z:|z|< r]$  such that U(z) has minimal Dirichlet integral over  $\mathcal Q'\cap G_r$ . Then  $U(z)=\lim_n U_n(z)$ , where  $U_n(z)$  is a harmonic function in  $\mathcal Q'\cap G_r\cap C_n$   $\Big(C_n=E\Big[z:|z+1|<1-\frac1n\Big]\Big)$  such that  $U_n(z)=U(z)$  on  $\partial G_r\cap C_n\cap \mathcal Q'$  and  $\partial U_n(z)=0$  on  $(\partial \mathcal Q'+\partial C_n)\cap G_r$ . Hence by the maximum principle  $\sup_{\partial G_r\cap \partial'\cap C_n}U_n(z)\geq \sup_{\partial G_r\cap \partial'\cap C_n}U_n(z)\geq \inf_{\partial G_r\cap \partial'\cap C_n}U_n(z)$  and by letting  $n\to\infty \sup_{\partial G_r\cap \partial'}U(z)\geq \sup_{\partial G_r\cap \partial'}U(z)\geq \inf_{\partial G_r\cap \partial'}U(z)$ . Put  $I'_r=E[z:|z|=r]$  and  $z=re^{i\theta}$  and  $L(z)=\int_{\mathbb R^n}\Big|\frac{\partial}{\partial r}U(z)\Big|rd\theta$ . Then by

$$\int_{E(r,r_0)} \frac{1}{r} dr \rightarrow \infty \text{ as } r \rightarrow 0$$

and  $\int\limits_{\mathbb{E}(r,r_0)}\frac{L(r)}{r}dr \leq \int\limits_{\mathbb{E}(r,r_0)} \left\{\left(\frac{\partial U(z)}{\partial r}\right)^2 + \frac{1}{r^2}\left(\frac{\partial}{\partial \theta}U(z)\right)^2\right\}dr\ d\theta \leq D(U(z)) < \infty,$  we see that there exists a sequence  $r_1 > r_2 \cdots$  such that  $\sup\limits_{\Gamma_{r_i}} U(z) = \inf\limits_{\Gamma_{r_i}} U(z) \leq \int\limits_{\Gamma_{r_i}} \left|\frac{\partial}{\partial r}U(z)\right|rd\theta = L(r_i) \to 0 \text{ as } r_i \to 0, \text{ where } E(r,r_0) = I(r,r_0) = I(r,r_0) = I(r,r_0)$  of the interval  $r_0 > z > r$  on the real axis. Whence  $\lim\limits_{z \to 0} U(z) = \lim\limits_{z \to 0} U(z) = \lim$ 

and  $\{p_n^2\}$  determine the same N-Martin's point of  $\Omega$  on z=0 and KM.T + NM.T and we have by Examples 3 and 4 the following

Theorem 4.b).  $KM.T \times NM.T$ .

Example 5. Let C=E[z:|z|<1] and  $F_n=E\left[z:\frac{1}{2^n}\leq z\leq \frac{1}{2^n}+a_n\right]$ on the real axis. We suppose that  $\sum_{n=1}^{\infty} F_n$  is so thinly distributed that z=0 may be an irregular point for the Dirichlet problem of  $\mathcal{Q}\!=\!C\!-\!\sum F_n.$  Then  $\varlimsup_{z\to 0}G(z,\,p_0,\,\varOmega)\!=\!\delta\!>\!0.$  Let  $\{p_n\}$  be a sequence tending to z=0 such that  $\underline{\lim}_{n} G(p_n,p_0,\Omega) \ge \frac{\delta}{2}$ . Choose a subsequence  $\{p_{n'}^1\}$  of  $\{p_n\}$  such that  $G(z, p_{n'}^1, \Omega)$  converges to a harmonic function (which is clearly non constant) denoted by  $G(z, \{p_n^1\}, \Omega)$ . Let  $\gamma_{n'}$  be a curve connecting  $F_{n'}$  with  $p_{n'}^1$ . Then since  $\partial F_n$  is regular,  $G(z, p_0, z_0)$ Q)=0 for  $z \in F_n$ . And we can find  $p_{n'}^2$  on  $\gamma_{n'}$  such that  $\lim_{n'} G(p_{n'}^2, p_0, p_0)$  $Q) = \frac{\delta}{4}$ . Choose a subsequence  $\{p_{n'}^2\}$  of  $\{p_{n'}^2\}$  such that  $G(z, p_{n'}^2, \Omega)$ converges to  $G(z, \{p_{n''}^2\}, \Omega)$ . Next choose a subsequence  $\{p_{n'''}^i\}$  of  $\{p_{n''}^i\}$ (i=1,2) such that  $\{p_{n'''}^i\}$  tends to a boundary point  $p^i$  with respect to Green's metric. Then dist  $(p^{\scriptscriptstyle 1},\,p^{\scriptscriptstyle 2})\!=\!\inf_{\scriptscriptstyle {\it L}}\!\int\!d|\,e^{-{\scriptscriptstyle G(z,\,p_0,\,\Omega)-ih(z,\,p_0,\,\Omega)}}|\!>\!e^{\delta/2}$  $-e^{\delta/4} > 0$ , whence  $p^1 \neq p^2$  with respect to Green's metric, where L is a curve connecting  $p^1$  with  $p^2$  and  $h(z, p_0, \Omega)$  is the conjugate of  $G(z, p_0, \Omega)$ . On the other hand,  $e_x G(z, \{p_{n'''}^i\}, \Omega)$  (from  $\Omega$  to C relative to  $v_n \le G(z, p_0, C) < \infty : p_0 = z = 0$ .  $v_n = E[z:|z| < 1/n]$ . Now there exists only one linearly independent positive harmonic function in  $C-p_0$  vanishing on  $\partial C$ . Hence by (14) of Lemma 8 such functions  $G(z, \{p_n^1\}, \Omega), G(z, \{p_{n'}^2\}, \Omega) \cdots$  are linearly dependent. On the other hand, by  $G(z, \{p_{n'''}^i\}, \Omega) > 0$   $\lim_{n'''} K(z, p_{n'''}^i, \Omega)$  exists and is equal to a  $G(z, \{p_{n'''}^i\}, \Omega)$ . But  $K(z, \{p_{n'''}^i\}, \Omega) = 1$  at  $z = p_0$ , whence by the linearly dependency  $K(z, \{p_{n'''}^1\}, \Omega) = K(z, \{p_{n'''}^2\}, \Omega)$ . Hence  $\{p_{n'''}^1\}$  and  $\{p_{n'''}^2\}$  determine the same K-Martin's point relative to  $\Omega$ . Thus  $KM.T \rightarrow G.T$ .

Example 6. Let  $R_1$  be a unit circle :|z|<1 with slits  $S_n:Im\ z=0,\ \frac{1}{2^n}\le Re\ z\le \frac{1}{2^n}+a_n.$  Let  $R_2$  be the identical leaf to  $R_1$ . We choose  $a_n$  so small that z=0 may be an irregular point of the Dirichlet problem of  $R_i'=R_i-\sum\limits_{n=1}^\infty S_n.$  Connect  $R_1'$  and  $R_2'$  crosswise on  $\sum S_n.$  Then we have a Riemann surface  $\Re=R_1+R_2$  of infinite genus. Since z=0 is irregular, we can find a sequence  $\{p_n^1\}$  in  $R_1'$  such that  $0< G(z,\{p_n^1\},R_1')=\lim\limits_n G(z,p_n^1,R_1')$  and  $\lim\limits_n G(z,p_n^1,\Re)=G(z,\{p_n^1\},\Re)$  exist and  $G(z,\{p_n^1\},R_1')=aK(z,\{p_n^1\},R_1'):0< a<\infty.$  Clearly  $G(z,\{p_n^1\},R_1')< G(z,\{p_n^1\},\Re)<\infty.$  Whence  $e_x(K(z,\{p_n^1\},R_1'))$  (from  $R_1'$  to  $\Re)<\infty$ . Similarly

we can find  $\{p_n^2\}$  in  $R_2'$  such that  $_{ex}(K(z,\{p_n^2\},R_2'))$  (from  $R_2'$  to  $\Re)$ )  $< \infty$ . Hence by  $R_1' \cap R_2' = 0$  and by (14) and by Lemma 8  $_{ex}(K(z,\{p_n^1\},R_1'))$  and  $_{ex}(K(z,\{p_n^2\},R_2'))$  are linearly independent. Thus there exists at least two K-Martin's point of  $\Re$  on z=0. Consider  $G(z,p_0,\Re): p_0=1/2$ .

Then since  $p_0$  is a branch point,  $G(z, p_0, \Re) = 1/2 \log \left| \frac{1 - \frac{z^*}{2}}{z^* - \frac{1}{2}} \right| : z^*$  is the

projection of z and  $G(z, p_0, \Re)$  is regular with respect to  $z^*$  in a neighbourhood of z=0. Hence  $\int_L d|e^{-G(z,p_0,\Re)-i\hbar(z,p_0,\Re)}|\to 0$  as the length of a curve  $L\to 0$ . Hence  $\{p_n^1\}$  and  $\{p_n^2\}$  determine the same point with respect to Green's metric. Hence KM.T + G.T. Thus by Examples 5 and 6 KM.T + G.T.

We show  $NM.T \times G.T$ . In Example 5 suppose  $\sum_{n=1}^{\infty} F_n$  is so thinly distributed on the real axis as z=0 is irregular and further  $\int d \log r = \infty$  (in reality the irregularity of z = 0 implies  $\int d \log r$  $=\infty$ ), where  $C \sum F_n$  means the complementary set of  $\sum F_n$  of the segment: Im z=0, 0 < Re z < 1. Let U(z) be a Dirichlet bounded and U(z) has minimal Dirichlet integral in a neighbourhood  $v_{r_0} = E[z:|z|]$  $< r_0 
bracket{ of } z = 0. ext{ Put } L(r) = \int\limits_{\mathbb{R}} \left| rac{\partial}{\partial n} U(z) \right| ds : \Gamma_r = E[z:|z| = r].$ there exists a sequence  $\{r_i\}$  in  $C \sum F_n$  such that  $L(r_i) \to 0$  as  $i \to \infty$ . Whence as in Example 4,  $\lim N(z, p_0)$  exists, where  $N(z, p_0)$  is an N-Green's function of  $C-\sum_{n=1}^{\infty}F-D_0$  and  $D_0$  is a compact set of  $C-\sum_{n=1}^{\infty}F_n$ . Hence there Exists only one N-Martin's point on z=0 and NM.T $\Rightarrow G.T.$  We use example 6. Let  $R'_1$  and  $R'_2$  be the leaves of Example 6. Let  $D=E\left\lceil z:\left|z+\frac{1}{2}\right|<\frac{1}{4}\right\rceil$  and put  $R_i'=R_i-D_0$  and  $\Re'=R_1'+R_2'$ . Let  $\widetilde{\Re}'$  be the mirror image of  $\Re'$  with respect to |z|=1. Connect  $\Re'$  and  $\Re'$  on |z|=1. Then we have a Riemann surface  $\Re$ . Clearly  $N(z, p, \Re') = G(z, p, \hat{\Re}) + G(z, \tilde{p}, \hat{\Re})$ , where  $\tilde{p}$  is the mirror image of p. Hence by the existence of linearly independent functions  $G(z, \{p'_n\}, \hat{\Re})$ ,  $G(z, \{p_n^2\}, \hat{\Re})$  we see there exist at least two linearly independent functions  $N(z, \{p_n^1\}, \Re')$  and  $N(z, \{p_n^2\}, \Re')$ . Thus there exist at least two N-Martin's point on z=0 and NM.T + G.T. Thus we have

Theorem 4. c).  $KM.T \times G.T$  and  $NM.T \times G.T$ .