No. 8] 457

103. Relations among Topologies on Riemann Surfaces. II

By Zenjiro KURAMOCHI

Mathematical Institute, Hokkaido University (Comm. by K. Kunugi, M.J.A., Oct. 12, 1962)

Proof of Lemma 4. We can suppose without loss of generality that ∂E^i and ∂F^i are regular for the Dirichlet problem. By $E^1 \supset E^2$ $G_{E^2}^{F^i}(z, z_0) - G_{E^1}^{F^i}(z, z_0) \ge 0$ is clear. Since $G_{E^2}^{F^2}(z, z_0) - G_{E^1}^{F^2}(z, z_0) = 0$ on ∂F^2 , by the minimum principle we have $G_{E^2}^{F^2}(z, z_0) - G_{E^1}^{F^2}(z, z_0) \ge 0$ on ∂F^1 . On the other hand, $G_{E^2}^{F1}(z, z_0) - G_{E^1}^{F1}(z, z_0) = 0$ on ∂F^1 . Next $G_{E^2}^{F2}(z, z_0)$ $-G_{E1}^{F2}(z,z_0) = G_{E2}^{F2}(z,z_0) \ge G_{E2}^{F1}(z,z_0) = G_{E2}^{F1}(z,z_0) - G_{E1}^{F1}(z,z_0)$ on ∂E^1 . Thus we have by the maximum principle

$$G_{\mathbb{Z}^2}^{F2}(z, z_0) - G_{\mathbb{Z}^2}^{F1}(z, z_0) \ge G_{\mathbb{Z}^1}^{F2}(z, z_0) - G_{\mathbb{Z}^1}^{F1}(z, z_0). \tag{2}$$

By definition we have $G_K^L(z,z_0)=G^{L+K}(z,z_0)=G_L^K(z,z_0)$. Put F^1 $=F_1^1, F_2^2=F_1^2, E_1^1=\sum_{i=0}^n F_i^1$ and $E_1^2=\sum_{i=0}^n F_i^2$. Then $G_1^{E_1+F_2}(z,z_0)-G_1^{E_1+F_2}(z,z_0)$ $z_0) = (G_{E2}^{F2}(z,\,z_0) - G_{E2}^{F1}(z,\,z_0)) + (G_{F1}^{E2}(z,\,z_0) - G_{F1}^{E1+F1}(z,\,z_0)) = (G_{E2}^{F2}(z,\,z_0) - G_{E2}^{F1}(z,\,z_0)) = (G_{E2}^{F2}(z,\,z_0) - G_{E2}^{F2}(z,\,z_0)) = (G_{E2}^{F2}(z,\,z_0) - G_{E2}^{F2}(z,\,z_0)) = (G_{E2}^{F$ $(G_{F1}^{E2}(z, z_0) - G_{F1}^{E1}(z, z_0)) \leq (G_{F2}^{E2}(z, z_0) - G_{F1}^{E1}(z, z_0)) + (G_{F2}^{E2}(z, z_0) - G_{F1}^{E1}(z, z_0))$ by (2). In this way proceed, then we have

$$G_i^{\sum_{i=1}^{F_i^2}}(z, z_0) - G_i^{\sum_{i=1}^{F_i^4}}(z, z_0) \leq \sum_{i} (G_i^{F_i^2}(z, z_0) - G_i^{F_i^4}(z, z_0)).$$
 (3)

Lemma 5. Let D be a simply connected domain and let L $=E[z:0\leq Re\ z\leq a,\ Im\ z=0]$ be a segment and let R be a closed set such that D-L-R is simply connected.

Fig. 1

Let Λ_i^s be a closed segment on L-Rsuch that $\Lambda_i^{\delta} = E[z:|z-a_i| < \delta, Im z=0]$ and $0 < a_1 < a_2 \cdot \cdot \cdot < a_n < a$. Put $\Lambda^{\mathfrak d}$ $=\sum \Lambda_i^{\mathfrak{d}}$. Let D' and Γ be simply connected domains such that $D \supset D' \supset (\Lambda^{\delta})$ +R), dist $(\partial \Gamma, \Lambda^{\delta}) > 0$ for $\delta < \delta_0$, dist $(\partial \Gamma, \Lambda^{\delta}) > 0$ $\partial D'$)>0 and D'-L-R is also simply connected. Let D_0 be a compact domain in D' such that dist $(\Gamma, D_0) > 0$. Let $w(z, \Lambda^{\delta}, D-L-R)$ be the harmonic measure of Λ^{δ} relative to D-L-R and

let $G(z, z_0, D')$ be the Green's function of D'. Then for any given positive number ε we can find a constant $\delta(\varepsilon)$ such that

$$\frac{w(z, \varLambda^{\delta}, D\!-\!L\!-\!R)}{G(z, z_0, D')} \!\!<\! \varepsilon \ on \ \partial \Gamma \ for \ \delta \!\!<\! \delta(\varepsilon).$$

Let z_0 be a fixed point in D. Map D-L conformally onto $|\xi|$ <1 by $\xi=f(z)$ so that $z_0\to\xi=0$. Let L' be a closed subset of (L-R) $\cap D'$ such that L' is contained completely in D' and containing $\partial \Gamma \cap L$. Then $\xi = f(z)$ is analytic on L'. Hence there exist constants N_1 and M_1 such that

$$0 < N_1 < |f'(z)| < M_1 < \infty$$
 in a neighbourhood of L' . (4)

Since dist $(\partial \varGamma, \varLambda^{\delta}) > 0$ implies dist $(\partial \varGamma_{\xi}, \varLambda_{\xi}^{\delta}) > 0$, $\lim_{|\xi_1| \to 1 \atop \xi_2 \in \varLambda_{\xi}^{\delta}} |\arg \xi_1 - \arg \xi_2| > 0$:

 $\begin{array}{l} \xi_1 \in \partial \varGamma_{\varepsilon}, \text{ where } \varGamma_{\varepsilon} \text{ and } \varLambda_{\varepsilon}^{\delta} \text{ are the images of } \varGamma \text{ and } \varLambda^{\delta}. \text{ On the other} \\ \text{hand, } w(z, \varLambda^{\delta}, D - R - L) = w(\xi, \varLambda_{\varepsilon}^{\delta}) = \frac{1}{2\pi} \int_{\varLambda_{\varepsilon}^{\delta}} \frac{(1 - r^2)}{(1 - 2r\cos(\theta - \varphi) + r^2)} d\varphi : re^{i\theta} \\ = \xi. \text{ Hence} \end{array}$

$$w(z, \Lambda^{\delta}, D-L-R) \leq \frac{\text{length of } \Lambda^{\delta}_{\xi}}{2\pi} \times (1-r^2) \text{ as } z \to L \text{ and } z \in \Gamma.$$
 (5)

Denote $E[z \in \partial \Gamma : \text{dist}(z, L) < h]$ by $\partial \Gamma^h$. Then by (4) there exist constants δ_3 , M_2 and δ_4 such that

 $w(z, \Lambda^{\delta}, D-L-R) \leq M_2(\text{length of } \Lambda_{\delta})h \text{ for } z \in \partial \Gamma^h, \ \delta < \delta_3, \ h < \delta_4,$ (6) where h = dist(z, L).

Map D' onto $|\zeta| < 1$ by $\zeta = g(z)$ so that $z_0 \to \zeta = 0$. Then g(z) is analytic on L' and g'(z) is continuous in a neighbourhood of L' with respect to z_0 , because D_0 is compact. Hence there exist constants N_3 , M_3 and δ_5 such that $0 < N_3 < g'(z) < M_3$ for $z \in \Gamma$ and dist $(z, L') < \delta_5$. Now $G(z, z_0, D') = \log \frac{1}{|\zeta|}$. Hence there exist constants and N_4 such that

$$G(z, z_0, D') \ge h N_4 \text{ in } \partial \Gamma^{\delta_5} \text{ for } h < \delta_6,$$
 (7)

because $\frac{\partial}{\partial n}G(\zeta, O, D)=1$ at $|\zeta|=1$. On the other hand,

$$G(z, z_0, D') > N_4 > 0 \text{ for } z \in (\partial \Gamma - \partial \Gamma^{\delta_5}).$$
 (8)

Hence by (6), (7) and (8) we can choose $\delta(\varepsilon)$ such that

$$\frac{w(z, \varLambda^{\delta}, D - L - R)}{G(z, z_0, D')} < \varepsilon \text{ on } \partial \varGamma \text{ for } \delta < \delta(\varepsilon) \text{ and for any } z_0 \in D_0.$$

Lemma 6. Let $D_n(n=1,2,\cdots)$ be a domain such that $D_n \uparrow D$. Let D_0 be a compact domain in D_1 . Let $\{p_m^i\}$ $(i=1,2,\ m=1,2,\cdots)$ be a sequence such that $\{p_m^i\}$ determine the same K-Martin's point relative to D_n for every n, in other words, $\lim_m K(z, p_m^1, D_n) = \lim_m K(z, p_m^2, D_n)$, $K(z, p_m^i, D_n) = \frac{G(z, p_m^i, D_n)}{G(p_0, p_m^i, D_n)}$ and p_0 is a fixed point in p_0 . Let (z, z_0, D_n) and (z, z_0, D_n) be Green's functions of p_n and p_n respectively. If $\frac{G(p_m^i, z, D) - G(p_m^i, z, D_n)}{G(p_m^i, z, D)} < \varepsilon_n$ for any $z \in D_0$ and $\lim_n \varepsilon_n \in D$ (i=1,2), then $\{p_m^i\}$ and $\{p_m^i\}$ determine the same K-Martin's point relative to p_n^i .

In fact, from the above inequality we have

$$\begin{split} \left| \lim_{m} \frac{G(p_m^i, z, D_n)}{G(p_m^i, p_0, D_n)} - \lim_{m} \frac{G(p_m^i, z, D)}{G(p_m^i, p_0, D)} \right| &< \frac{\varepsilon_n}{(1 - \varepsilon_n)} \overline{\lim}_{m} \frac{G(p_m^i, z, D)}{G(p_m^i, p_0, D)} \\ &= \frac{\varepsilon_n}{(1 - \varepsilon_n)} \overline{\lim}_{m} K(p_m^i, z, D) < \frac{\varepsilon_n}{(1 - \varepsilon_n)} M(D_0) \text{ in } D_0, \end{split}$$

where $M(D_0) = \sup_{z \in D_0} (\overline{\lim}_m K(p_m^i, z, D)) < \infty$. Since $p\{\frac{1}{m}\}$ and $\{p_m^2\}$ determine the same point, we have $\text{by} \frac{G(p_m^i, z, D_n)}{G(p_m^i, p_0, D_n)} = K(p_m^i, z, D_n)$

$$|\lim_{m} K(p_m^1, z, D) - \lim_{m} K(p_m^2, z, D)| < \frac{2\varepsilon_n M(D_0)}{1 - \varepsilon_n} \text{in } D_0.$$

Let $\varepsilon_n \to 0$. Then $\lim_m K(p_m^1, z, D) = \lim_m K(p_m^2, z, D)$ in D_0 , whence $\lim_m K(p_m^1, z, D) = \lim_m K(p_m^2, z, D)$ for $z \in D$. Thus $\{p_m^1\}$ and $\{p_m^2\}$ determine the same K-Martin's point relative to D.

Example 3. Domain D^* . Let m_n $(n=1, 2, 3, \cdots)$ be a positive number such that

$$\sum_{n=1}^{\infty} \frac{1}{m_n} \leq \frac{1}{72\pi}$$

and put $a_n = \frac{6}{2^{n+2}}e^{-m_n}$. Then $\log \frac{(6/2^{n+2})}{a^n} = m_n$.

Let \Re be a square, \tilde{s}_n , t_n , s_n^1 , s_n^2 and s_n^3 be slits and R_n be a rectangle as follows:

 $\Re: 0 < Re z < 6, 0 < Im z < 6.$

 \tilde{s}_n : Re z=3, $6 \ge Im z \ge 4.5 + a_1$ for n=0 and

$$\tilde{s}_n \colon \operatorname{Re} z = 3, \ 3\left(\frac{1}{2^{n-1}} + \frac{1}{2^n}\right) - a_n \ge \operatorname{Im} z \ge 3\left(\frac{1}{2^{n+1}} + \frac{1}{2^n}\right) + a_{n+1} : n \ge 1.$$

$$t_n\colon \operatorname{Re} z = 3, \ 3\left(\frac{1}{2^{n-1}} + \frac{1}{2^n}\right) + a_n \ge \operatorname{Im} z \ge 3\left(\frac{1}{2^{n-1}} + \frac{1}{2^n}\right) - a_n : n \ge 1.$$

$$R_n: \alpha \leq Re \ z \leq \alpha + 1, \frac{6}{2^n} + \frac{6}{2^{n+4}} \geq Im \ z \geq \frac{6}{2^n} - \frac{6}{2^{n+4}}, \text{ where } \alpha \text{ is 1 or }$$

4 according as n is odd or even.

$$s_n^1: 0 \le Re \ z \le 1$$
, $Im \ z = \frac{6}{2^n}$. $s_n^2: 2 \le Re \ z \le 4$, $Im \ z = \frac{6}{2^n}$.

$$s_n^3: 5 \leq Re \ z \leq 6, \ Im \ z = \frac{6}{2^n}.$$

Put
$$D^* = \Re - \sum_{n=1}^{\infty} (\tilde{s}_n + R_n + s_n^1 + s_n^2 + s_n^3) - \tilde{s}_0$$
.

Domain $_{e}\mathfrak{D}_{m}$, l < m. Slits Λ_{n} and domains Δ_{0} and Δ'_{0} . Let Δ'_{0} (i=1,2) as follows:

$$\Delta_0^i = E[z: \alpha \leq Re \ z \leq \alpha + 1, \ 4 \leq Im \ z \leq 5],$$

where $\alpha=1$ or 4 according as i=1 or 2. Put $\Delta_0=\Delta_0^1+\Delta_0^2$ and $\Delta_0'=E[z: \operatorname{dist}(z,\Delta_0)\leq \frac{1}{2}]$.

Fig. 2

Let Γ_n be a simply connected domain containing R_n as follows:

 $\Gamma_n: \alpha - 1 \le Re \ z \le \alpha + 1, \ \frac{6}{2^n} - \frac{6}{2^{n+3}} \le Im \ z \le \frac{6}{2^n} - \frac{6}{2^{n+3}}$ and let A_n^1 and

 Λ_n^2 be segments on $s_n^1 + s_n^2$ (for odd n) or on $s_n^2 + s_n^3$ (for even n) such that $\Lambda_n^1: \alpha - 0.75 - \alpha_n \le Re \ z \le \alpha - 0.75 + \alpha_n$,

 $A_n^2: \alpha + 0.75 - \alpha_n \le Re \ z \le \alpha + 0.75 + \alpha_n, \ (0 < \alpha_n < 0.2),$

where $\alpha = 1.5$ or 4.5 according as n is odd or even. Put $\Lambda_n = \Lambda_n^1 + \Lambda_n^2$.

Put $D^{s_n}=\Re -s_n^1-R_n-s_n^2$ (for odd n) and $=\Re -s_n^2-R_n-s_n^3$ (for even n). Let $w(z,\Lambda_n,D^{s_n})$ be the harmonic measure of Λ_n relative to D^{s_n} . Let $G(z,z_0,\Re)$ be the Green's function of \Re . Put $M_n=\max G(z,z_0,\Re)$ on $\partial \Gamma_n$ as z_0 varies in Δ_0 . Then $M_n<\infty$. Let $G(z,z_0,D^*)$ be the Green's function of $D^*:z_0\in\Delta_0$. Now D^{s_n} and D^* are simply connected. Hence by Lemma 5 we can find α_n such that

$$M_n w(z, \Lambda_n, D^{s_n}) \leq \frac{1}{4^n} G(z, z_0, D^*)$$
 on $\partial \Gamma_n$ for any $z_0 \in \Delta_0$. (8)

We suppose that α_n is determined as (8) and Λ_n is defined for every n.

Let s_n^1 and s_n^3 be segments on s_n^1 and s_n^3 such that

 $s_n^1: 0 \le Re \ z \le 0.75 - \alpha_n$ and $s_n^3 = s_n^3$ for odd number n,

 $s_n^1 = s_n^1$ and $s_n^3 : 5.25 + \alpha_n \le Re \ z \le 6$ for even number n. Then $s_n^1 \subset s_n^1$ and $s_n^3 \subset s_n^3$.

Let p_n^i (i=1, 2 and $n=1, 2, 3, \cdots$) be a sequence such that p_n^i : $p_n^i + 1 / 6 + 6$ is where $1 < p_n^i < 2$ for i=1 and $4 < p_n^i < 5$ for i=2

 $c_n^i + \frac{1}{2} \left(\frac{6}{2^n} + \frac{6}{2^{n+1}} \right) i$, where $1 < c_n^i < 2$ for i = 1 and $4 < c_n^2 < 5$ for i = 2.

Put $D_m = \Re - \tilde{s}_0 - \sum_{1}^{m} ('s_n^1 + 's_n^3) - \sum_{m+1}^{\infty} (\tilde{s}_n + R_n + s_n^1 + s_n^2 + s_n^3)$. Then D_m is simply connected. Map D_m onto $|\zeta| < 1$. Then since $\{t_n\} : n > m+2$ is a fundamental sequence determining a prim Ende, the images of $\{p_n^1\}$

and $\{p_n^2\}$ tend to the same point for any c_n^i . Hence we have the following

Proposition 1. $\{p_n^1\}$ and $\{p_n^2\}$ determine the same K-Martin's point relative to D_m for any m.

Proposition 2. $\{p_n^1\}$ and $\{p_n^2\}$ determine the same K-Martin's point relative to ${}_{l}\mathfrak{D}_m$, i.e. $\lim_n K^{l\mathfrak{D}_m}(p_n^1,z) = \lim_n K^{l\mathfrak{D}_m}(p_n^2,z) : K^{l\mathfrak{D}_m}(p_n^i,z) = \frac{G(z,\,p_n^i,\,{}_{l}\mathfrak{D}_m)}{G(p_0,\,p_n^i,\,{}_{l}\mathfrak{D}_m)}$ and p_0 is a fixed point in Δ_0 .

 and $M_nw(z, \Lambda_n, {}_t\mathfrak{D}_m) \ge G(z, z_0, \Re) \ge G(z, z_0, {}_t\mathfrak{D}_\infty) \ge G(z, z_0, {}_t\mathfrak{D}_m) = 0$ on $\sum_{m+1}^{\infty} \Lambda_m$ for any $z_0 \in \mathcal{A}_0$. Hence by the maximum principle

$$\sum_{m=1}^{\infty} M_n w(z, \Lambda_n, {}_{t}\mathfrak{D}_m) + G(z, z_0, {}_{t}\mathfrak{D}_m) \ge G(z, z_0, {}_{t}\mathfrak{D}_m)$$

$$\ge G(z, z_0, {}_{t}\mathfrak{D}_m) \text{ in } {}_{t}\mathfrak{D}_m : z_0 \in \mathcal{A}_0.$$
 (10)

Fig. 4

By (8) $\frac{1}{4^n}G(z,z_0,{}_t\mathbb{D}_m) \geq \frac{1}{4^n}G(z,z_0,D^*) \geq M_nw(z,\varLambda_n,D^{s_n}) \geq M_nw(z,\varLambda_n,L^{s_n}) = M_nw(z,\varLambda_n,L^{s_n})$ on $\partial \Gamma_n$. On the other hand, $\frac{1}{4^n}G(z,z_0,{}_t\mathbb{D}_m) = 0 = M_nw(z,\varLambda_n,L^{s_n})$ on $\partial_t\mathbb{D}_m - \Gamma_n$, whence by the maximum principle $\frac{1}{4^n}G(z,z_0,{}_t\mathbb{D}_m) \geq M_nw(z,\varLambda_n,L^{s_n})$ in ${}_t\mathbb{D}_m - \Gamma_n$. Hence

$$\left(\sum_{m+1}^{\infty} \frac{1}{4^n} G(z, z_0, {}_{l} \mathfrak{D}_{\infty}) \geq \right) \sum_{m+1}^{\infty} \frac{1}{4^n} G(z, z_0, {}_{l} \mathfrak{D}_m) \geq \sum_{m+1}^{\infty} M_n w(z, \Lambda_n, {}_{l} \mathfrak{D}_m)$$

$$\text{in } {}_{l} \mathfrak{D}_m - \sum_{m+1}^{\infty} \Gamma_n : z_0 \in \mathcal{A}_0.$$

$$(11)$$

Thus by (10) and (11) $\sum_{m+1}^{\infty} \frac{1}{4^n} G(z, z_0, {}_{t} \mathfrak{D}_m) + G(z, z_0, {}_{t} \mathfrak{D}_m) \geq G(z, z_0, {}_{t} \mathfrak{D}_m) = G($