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Proof of Lemma 4. We can suppose without loss of generality
that oE* and 0F"® are regular for the Dirichlet problem. By E'DE?
Gz, 2.)—GEi(2, 2,)=0 is clear. Since GHi(z, 2,)— G52, 2)=0 on 3F?
by the minimum principle we have Gzi(z, 2,)—Gzi(2, 2,))=0 on oF™.
On the other hand, G%i(z, 2,)—Gxi(2,2,)=0 on 9F'. Next Gzi(z, z,)
—G7(2, 20) =G (2, 20) ZG(2, 2,) =G:(#, 2,) —Gm(z, 2,) on OE*. Thus we
have by the maximum principle

GEi(2, 2.)— G2, 20) 2 GEi(7, 20) —G (2, 7). (2)

By definition we have G%(z, 2))=G**%(z, 2,))=G%(2, 2,). Put F!

=FL F*=F}, B'=31F! and E*=31F%. Then G™"(z z)—G* "7,

=2

2o) = (Gma(2, 20)— G2, 2,)) + (GEL(2, 2,) —GF*T(2, 2,)) = (Ga(7, 2,) —G (7,
20)) +(G7i(2, 20) —G7i (2, 20)) = (G™(, 2) —G"(2, 2)) +(G™'(, 2,) — G"'(2, 2,))
by (2). In this way proceed, then we have

GF ¥z, 2)— GT (2, 7)< 2 G4z, 2)— G Yz, 20)). (3)

Lemma 5. Let D be a simply connected domain and let L
=FE[2:0=Rez=a, Im 2z=0] be a segment and let R be a closed set
such that D—L—R is simply connected.

Let A: be a closed segment on L—R
such that Al=E[z:|z2—a,| <4, Im 2=0]
and 0<a,<ay - <a,<a. Put  A°

p =A% Let D' and I' be simply con-
nected domains such that DDD'D(A°
+ R), dist (oI, 4°)>0 for 6<4,, dist (3",
0D)>0 and D'—L—R 1is also simply
connected. Let D, be a compact do-
main im D' such that dist (I", D,)>0.
Let w(z, A°, D—L—R) be the harmonic
measure of A° relative to D—L—R and
let G(z,2, D) be the Green’s function of D'. Then for any given
positive number ¢ we can find a constant o(e) such that
w(z, A, D—L—R)
G(, 2, D)

Let 2, be a fixed point in D. Map D—L conformally onto |£]

<1 by é=f(z) so that 2,>&=0. Let L’ be a closed subset of (L—R)

Fig. 1

<e om o' for §<i(e).
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ND" such that L’ is contained completely in D’ and containing
o"MNL. Then £=f(z) is analytic on L’. Hence there exist constants
N, and M, such that

0<N,<|f(?)|<M,< o in a neighbourhood of L' (4)
Since dist (91", 4°)>0 implies dist (37", 49)>0, lim |argé, —argé,|>0:
(i
&, eol’,, where I', and A: are the images of I and A°. On the other
1 1—9? )
hand, w(z, 4, D—R—L)=u(s, g)zgf (1—2r <Eos (0-Z§D)+’r'2) dpire
=¢. Hence 43

w(z, A’,D—L—R)g—k’ﬁ%l—@—/gx(l—rz) as z—>L and zel'. (5)
T

Denote E[zeol :dist (2, L)<h] by oI'*. Then by (4) there exist con-
stants 6,, M, and §, such that
w(z, A°, D— L— R)< My(length of A,)h for zedl™, 6<d;, h<<ds (6)
where h=dist (z, L)).
Map D' onto |{|<1 by {=g(?) so that z,—>{=0. Then g(2) is
analytic on L’ and ¢'(z) is continuous in a neighbourhood of L’ with

respect to z, because D, is compact. Hence there exist constants
N,, M, and o6; such that 0<N;<¢'(r) <M, for zel and dist (2, L)

<d. Now G(z, 2,, D)=log —é—l Hence there exist constants and
N, such that
G(z, 25, D')=h N, in o'’ for h<g,, (7)

because -a—a—G(C, 0,D)=1 at |{|]=1. On the other hand,
n

G(z, 25, D')>N,>0 for ze(ol'—ol%). (8)
Hence by (6), (7) and (8) we can choose d(¢) such that
wz, L, D-—L__R)<s on o' for §<d(e) and for any z,¢D,.
G(2, 2, D)

Lemma 6. Let D,(n=1,2,---) be a domain such that D,4tD.
Let D, be a compact domain im D,., Let {pi} (:=1,2, m=1,2,--.)
be a sequence such that {p:} determine the same K-Martin’s point
relative to D, for every m, im other words, lim K(z, py, D,)=1im K(z,

5 m m
o, D), Kz, 0t Dn):;%% and p, is a fired point in D,
Let (2,2, D,) and G(z, 2z, D) be Green’s functions of D, and D re-
G(pfm Z, D)'_—G(p:‘ny 2, D,
G(pi, 2, D)
=0 (1=1,2), then {p.} and {p} determine the same K-Martin’s
point relative to D.
In fact, from the above inequality we have

spectively. If ) <e, for any zeD, and lime,
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i:.. G(0h,2,D,) . G(p, 2 D) e, = G(p%, 2 D)
lim M & ) hm llm
” G(pfm Doy n) G(pzm Dos D) (1—61») G(pfn’ Do, D)
= lim K(¢p%, 2, D M(D D,,
Aoy T K 2, D)< MDY in D,

where M(Do)—sup (hm K(ph, 2, D))<co. Since p{.} and {p2} deter-

G(pmi 2 D,) _ =K(p!
R Doy zr -Dn)
G(Dos Doy D)

|lim K(ph, 2, D)—lim K(p%, , D) ] <Ef]'ﬁ@_m D..

Let ¢,>0. Then lim K(p}, 2, D)=1im K(p%, 2, D) in D, whence
lim K(p}, 2, D)=lim K(p2, 2, D) for zeD. Thus {p;} and {pl} deter-

mine the same K-Martin’s point relative to D.

Example 3. Domain D*. Let m, (n=1,2,3,---) be a positive
number such that

mine the same pomt we have by

=1 _ 1
>)

= m,,~ 2r

n+2
and put a,=—5 ¢, Then log /2" —p |
2n+2 a®

Let R be a square, §,, t,, s., s2 and s be slits and R, be a rec-
tangle as follows:

N: 0<Rez<B, 0<Im2<6.
§,: Rez=38, 6=Im 2=4.54+a, for n=0 and

§,: Rez=3, 3< 1 + 1) —a >Imz23< 1 +-21—n—)+a,,+1:ngl.

2n 1 2n n+1
t,: Rez=38, 3( 1 +—1——>+a =Im z>3< -+ 1> a,:n=1.
n on- 1 n on- 1 on =
R,: agRez=Za+1, —-l— +4__Im zg%—@i—‘, where a is 1 or

4 according as » is odd or even.

sl: 0ZRez<1, Im zz——G——. 82: 2= Rez<4, Im z= 26n

s b<Re2<6, Im z= gn
Put D*=R—S5,+ R,+s1+s2+s2)—3,.
n=1
Domain ,D,, 1<m. Slits 4, and domains 4, and 4;. Let 4;(i=1,2)
as follows:
t=F[z:a<Rez=Za+1, 4<Im 2<5],
where a=1 or 4 according as i=1 or 2. Put 4,=4+4% and 4;=

E[z:dist (2, 4,) g%]
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Let I', be a simply connected domain containing R, as follows:

I',:a—1=ZRez<a+t1, —2%—— 2?+s <Im zg%—— 2§+3~ and let 4% and

A3, be segments on s,+s2 (for odd ») or on si+si (for even n) such
that A :a—015—a,<Rez2<a—0.75+a,,
A2 a+0.75—a,<Rez2<a+0.754a,, (0<a,<0.2),

where a=1.5 or 4.5 according as » is odd or even. Put A,=AL+ 4.

Put D»=%—s,—R,—s2 (for odd »n) and =R—si—R,—s5, (for even
n). Let w(z, 4,, D°*) be the harmonic measure of A, relative to D™
Let G(z, 2, ®) be the Green’s function of . Put M,=max G(z, 2, i)
on o', as 2, varies in 4,, Then M,<o. Let G(z, 2, D*) be the
Green’s function of D*:z,64,, Now D' and D* are simply connected.
Hence by Lemma 5 we can find a, such that

M, w(z, A, D‘")§—41n——G(z, 2y D*) on oI', for any z,¢4,. (8)

We suppose that «, is determined as (8) and 4, is defined for
every n.

Let ‘s and ’s} be segments on s, and s® such that

'sL:0<Rez<0.75—a, and 'sS=s} for odd number =,
'st=s! and 's}:5.25+a,<Rez=¢ for even number n.
Then ’s,Cs., and 'siCs?.

Let p% (1=1,2 and »n=1,2,8,---) be a sequence such that pj:
cﬁ.+%< 26n —|—-2—n6+—1>'i, where 1<ci<2 for i=1 and 4<ci<5 for i=2.
Put D, =R —5,—3)(sh+'8))—S)(5,+ R, +sL+s+s). Then D, is sim-

1 m+1
ply connected. Map D, onto |{|<1. Then since {t,}:n>m+42 is a
fundamental sequence determining a prim Ende, the images of {p}
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and {pl} tend to the same point for any c¢.. Hence we have the
following

DSn

@ 2]

A‘ " Ay AI,L ‘
5
A A
| |
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Fig. 8

Proposition 1. {p.} and {pl} determine the same K-Martin’s
point relative to D,, for any m.

m 3
Put l@szm_ZE (3;+3§,+33,+Rn+§n—/17,) = 9%_50_2 (’8,},-’-'3,3,) -
+1 1
HZI (3;+83,+33,+§n+Rn— An) —Z (8:',+Sf,+8§,+ Rn+§n)' Then Dm _lmm
m+1
is compact in D,. Hence by Lemma 1 and Proposition 1 we have
the following

Proposition 2. {p;} and {pi} determine the same K-Martin’s
point relative to D, i.e. lim Ki®n(p}, 2)=1im Ki®n(pi, 2) : Ki®n(p}, 2)

G(z, pi, ;D) . Lo
=\ ImiTm/_ gnd p, 18 a fixed point in 4.
G(Po, Pty D) ’ ’
13 ()
The domain ,@m1,®w=9%—§0—$(’si,—l—'sf,)—lZ}(s},—l—sf,—l—sf,—f—é’n—l—Rn
1
—A4,) as m—>o, By D*"+4,D,9,DD* for any n we have w(z, 4,,
D) Sw(z, A,, D) and G(z, 2y, \D,,) =G (7, 2, D*). Consider G(z, z,, ;D..)
and G(z, 2, ;D,) in ;D,. Then G(z, 2, ,De) =G (7, 2, D,)=0 on 9,9,
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a'nd an(z’ Am lsz}m)gG(zv zo» %)gG(z’ zO’ l@w)gG(z: z09 L@m)zo on 2+1/1n
for any 2,€4,. Hence by the maximum principle

i;anw(z’ Am ZSDm)—l-G(zr zo’ l@m)gG(zr zo, l@oo)
=G(2, 2, ;D) In D264, (10)

1%
=2
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By (8) —-6(z 20, D) 216 (2, , D*) 2 Mau(s, 4, D) = M0 (s,
Apy 1 D,) on 0", On the other hand, —il;G(z, 20y 1 D) =0=M,w(z, 4,,

Dn) on 8,9, —1",, whence by the maximum principle —41;G(z, 20y 1Om)
=M,w(z, 4,,,D,) in D,,—I",. Hence

< gI%G(z, 20 1 Deo) g)ﬂ% —%—G(z, 20, 1 Dp) ;ﬂ% M,w(z, A,y D)
in l@m—élfn 12,64, (11)
Thus by (10) and (11) mﬁ}l%G(z, 20 1 D) +G (2, 20, ;D) = G(2, 20,
D26z, 7 D) in Du—3T 0 Now (pi}e Du—317,. Pute, 2,%1%'
Then li:'n ¢,=0. Hence G(p%, 2, D) —G(DL, 20, Dyn) < EnG{(D% 2oy ;D)

<¢,G(0%, 2 ;D..). Hence by Proposition 2 and by Lemma 6 we have
the following proposition which is given in the following paper.




