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1. Existence of Pseudo-Analytic Differentials on
Riemann Surfaces. 1

By Akira SAKAI
(Comm. by Kinjir6 KUNUGI, M.J.A., Jan. 12, 1963)

In this paper, we shall prove the existence theorems for (¥, G)-
pseudo-analytic differentials in the sence of Bers (Bers, L., [1], [2])
on arbitrary Riemann surfaces, under the condition:

(1) —iFG>0, M=|F|+|G|=M"*>0.

We consider the differential w=, ¢ du, u being locally a solution of
the partial differential equation

(2) (ou,)+(ou,), =0,

where ¢ being a positive function on Riemann surface. A generali-
zation of Weyl’s lemma for this differential is proved, and the method
of orthogonal projection is used.

I. [a,b]-analytic functions and differentials. 1. Let 2 be a
domain of z-plane. A subdomain Q, of 2 is called the compact subdo-

main of Q, if 2,C0Q and denoted by 2,&2. The class of functions
continuous on 2 (or, which have continuous partial derivatives up to
the n-th order) is denoted by C(R2) (or C*(2)). The class of functions
whose 7-th order partial derivatives are all uniformly a-Holder con-
tinuous (0<a<1) in 2, is denoted by C***(2). The class of functions
of C(Q)(C"(Q), C***(2)) which have compact carrier in 2 is denoted
by Co(2)(CP(R2), Ci+*(2)). The class of functions square summable on
every compact subdomain of £ is denoted by L£*(9Q).

Definition 1.1. A function f(z) of {¥Q) is said to be in the class
Du(R), if there exists a function g(2)el*(Q) such that, for every func-
tion ¢(z) of Ci(Q),

(L) [ [ @+ a@s@dady =0

holds. In this case, we write g(2)=r().
We note that the condition (1.1) is replaced by

L1y Re [ [17(2)9:()+ 9(2)(@)}dady=0.

2

Lemma 1.1. If f(7)eD:(2) and fi(2)=0 a.e. in 0, then f(2) is
analytic in 0.

Proof. Let Q, be any compact subdomain of . Let L*,) be the
Hilbert space of the functions square summable on 2, E(2,) be the
closed subspace of L*Q,) spanned by the functions ¢, with ¢eC3(Q).
The orthogonal complement of E(Q,) in L*,) is denoted by A(f2,).
We shall prove that all the functions of A(Q,) are analytic. If f(2)
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belongs to A(2,)NC'(Q,), it is analytic. Let J, denote the molifier
(K. O. Friedrichs [8]). If f(2) is any function of A(2,), then
(Jo Sy )=(f, J.8.)=(f, (J.9).)=0

holds for every ¢(2)eCi(f,), and for sufficiently small . Therefore,
J.feA(,), and, since J.feC¥R,), it is analytic. On the other hand,
J.f converges to f(2) in L*Q,) and hence uniformly in every compact
subdomain of £,. This implies the analyticity of f(z). If f(2)eDA(R2)
and f:(2)=0, then feL*Q,) and

(£, 8)= [ [ £ $.dady=0

holds for every ¢(z)eC3(2) and hence we have f(z)e A(2,) which proves
the lemma.

Lemma 1.2. Let Q2 be a bounded domain and p(2) be a bounded
measurable function on . Set

o(2) :rfgf_—c—z dédn,
then we have

(1) o(2) is in C(Q), and is bounded in Q.
(2) a(2) is in Du(N), and o.(2)=p(2) a.e. in Q.
(8) If p(r)eC(Q), then o(2)eC***(Q).
This is the well-known result.

2. Let 2 be a bounded domain and a(z), b(z) be functions of
C*(Q).

Definition 1.2. A function f(z) of CY(Q) is called an [a,b]-analytic
Sunction if it satisfies the equation
(1.2) fi=af+bf a.. in Q.

Lemma 1.8. If f(z) is a bounded function of D(Q) and satisfies
1.2) a.e. in Q, then f(2) is [a, b]-analytic.

Proof. Consider the function

(1.3) o(2)=f(2)+ _71; f f a&)f (CC) + Z(C)f(f) dedy,.

Since af+bf is bounded, the integral of the right member is in
CNDA(R2). We have ¢;(2)=0 a.e. in . By Lemma 1.1, ¢(z) is
analytic. Therefore, we have f(2)eC*%(2), and hence af-+bf is in
C*(2), and we have consequently f(2)eC***(2). This proves the lemma.
(This proof contains the result that the [a, b]-analytic function be-
longs to C'**(Q2).)

Lemma 14. (Similarity principle.) If f(2)eD2) and satisfies
(1.2) a.e. in Q, then there exists an amnalytic function ¢(z) similar
to f(2): that is, there exists a function S(2) such that

0<k < |8()| <k
for some constant k, and such that
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(14) o(2)=S8(2).f (2).
Proof. Let E be the set of points of 2 at which f(2)=0. Set
p(z)z{a(z)+b(z)ﬁz)/f(z) in Q—E.
a(z)+b(z) in FE.
Then, p(?) is a bounded measurable function in Q. Setting

(L5) o(2) = % f f %’% dedy,

we have 0:()=—p(2) by Lemma 1.2. We set ¢(2)=S(2)f(z) with
S(z)=e®. Then, we have in Q—E, ¢,(2)=S(){f:(2)—p(2)f(2)} =S(2){f:
—af—bf}=0 and in E, ¢(2)=S(2){f.(2) —p(2)f (2)} =S(2){fs—af —bf}
=8{f:—af—bf}=0. Thus, we have ¢;(2)=0 a.e. in 2.

Lemma 1.5. If f(2)eD(Q)NL*Q) and satisfies (1.2) a.e. in 0,
then we hawve, im every compact subdomain 2, of £,
(1.6) [f(R)] ol las
where k, is a constant depending to Q,.

Proof. Let 0 be the distance between £, and 02. We consider

an arbitrary point 2,2, and the disk K:|z—z,] g—‘;—. Define the

analytic function ¢(z) of previous lemma. Then we have
Lf (20) P K% | (20) |*

2
é%—z f f | p(2) [*dxdy
piq

g.% fx f | £ (2) |2dady <K\ £ I3

with k,=2k%/() = ).

If f(2)eDs(R) and satisfies (1.2) a.e. in 2, then for any compact
subdomain @, of 2, f(2)eL*(2,) and hence f(2) is bounded on every
compact subdomain of . Thus, from Lemma 1.3, we have

Theorem 1.1. If f(2)eD(R2) and satisfies (1.2) a.e. in 2, then f(z)
1s [a, b]-analytic in Q.

3. Let R be an arbitrary Riemann surface, and C,C?% ... etec.
be the classes of functions which have the corresponding properties
in every neighborhood. Let a(z)dz, b(z)dz be differentials of C-.

Definition 1.8. A differential ¢=fdz is called an [a, b]-analytic
differential if ¢eC' and satisfies the equation
(1.7) fi=af+bf.

We consider the real Hilbert space L? of pure differentials square
summable on R. The inner product is defined by

(L8) (0, )=Re[ [onsd, ool
B

We also consider the subspace
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E=closure of {D¢=(¢,+ap+bg)dz; $cC?} in L2
The orthogonal complement of E in L*? is denoted by A.
Theorem 1.2. A is the space of [a, b]-analytic differentials in L2
Proof. Let ¢=fdz be in L% then for every ¢eC?, we have

1.9) (¢, DF)=Re f f fdzA\i{@, +ap+bg)dz

=2Re [ [{#4:+(af+t7)¢)dndy.

If ¢ is [a, b]-analytic and is in L?, then the right member vanishes
and therefore pc A, Conversely, if pc A, then for every ¢eCi, we
have

Re [ [(#:+(af +tD)g}dady =0,

Therefore ¢ is in P, and satisfies (1.7). By Theorem 1.1, ¢ is [a, b]-
analytiec.

II. o-harmonic differentials. 1. In this chapter, we consider a
generalization of harmonic differentials. Let R be an arbitrary
Riemann surface and ¢(p) be a function of C'*%, such that M=oc=
M-*>0 on R.

We define the differential operators D, D,, and D,, as follows:
(2.1) Du=,cdu for a real function u(p) of C.

D w=d<i_w> . .
(2.2) ! Jo for a real differential weC™.
D,w=d(/o w)
Definition 2.1. A real differential weC* is called s-harmonic
differential if Dw=0 and D,x0=0 hold.
The condition D;w=0 implies that o is written as w=Du locally,
and if, moreover, D,x»=0, then u(z) satisfies the equation
(2'3) (auz)x+ (Guy)fl = 0'
Definition 2.2, A real function u(p) defined on a domain QCR
18 called o-harmomnic function on Q, if it satisfies (2.3) in 0.
2. Let L* be the Hilbert space of real differentials square
summable on R. Consider the subspaces
E =closure of {Dg¢; ¢eC;} in L?

2.4
24 E*=closure of {—1—*D¢; ¢eC§’} in L2
(1

Lemma 2.1. A differential o of C'NL* is o-harmonic if and
only if wlE and ol E*.

Lemma 2.2. The space E and E* are mutually orthogonal.
The statements are easily seen by the relations:

(0, Dg)= f AT *dp = f f $Dyr
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<w, %*D¢>=—Lf@ATI7—d¢=L[¢D1w
<D¢, %*D¢’>=—f fJngﬁ/\ %dqs':— f f A Ad¢’ =0.

The orthogonal complement of E@E* in L? is denoted by H.
Lemma 2.3. (Generalization of Weyl’s lemma.) All the differ-

entials of H are in C'**, and therefore H is the space of o-harmonic
differentials in L2

Proof. We set
2.5 =% b="Y=,
(25) ¢ 20 20
Then the differentials adz and bdz belong to C*. For eveay ¢—=
¢’ +1i¢""eC:, we have

(/7 (0+i*0), DF)=Re f J T (0 ix0) Ai(gstap+BB)dz

—Re fR ST (@+ix0) A {i¢édé— % (0¢");d§'}

=ffﬁw/\ wdg’ ——ffa)/\ %;d(aqﬁ”).
= (@, D)~ (0, LDs(og).

Since ¢’ and ¢¢” are in C7, the right member vanishes. This implies
that J o (0o+i+w) belongs to A, and hence weC'**. Thus we have

Theorem 2.1. If o is a differential of L%, then o is decomposed
wnto
(2.6) o=w,t o+,
where w, is g-harmonic, w,;€E and w,c E*.

3. To obtain the further results, we shall prove

Lemma 24. If weENCY, then w=Du for a function weC®: If
weE*NCY, then w=Dv for a function veC?

Proof. Suffice it to prove the first statement. Let 7 be an
arbitrary analytic closed curve on R, and G be a doubly connected
domain containing 7y as its separating curve and possessing the smooth
boundary curves. The right and left subdomains of G are denoted

by G* and G~ respectively. We can construct a function f(p)eC*G)
by

1 for peG-Ury
f(p)_{o for peR—G,
and a differential »eC* by
_(df in G
’7“{0 in R—G.

Since we ENC!, we have
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( >=_ff /\— ——fr

On the other hand, there is a sequence {co,,}CE such that w,=D9¢,
with ¢,¢C{ and ||lw,—o||>0 as m—>co. Since 7 is closed we have

1 — — =
<4/To'w"’ *77>- fR f d¢,An=0. Consequently we have J_w =0. It
implies that J—l&;w is exact and that o=, 0 du with ueCz.
Lemma 2.5. If weC™*, then locally o=Du+ % «Dv with u, veC-.

Proof. Let V be any neighborhood and |z| <1 be the parametric
disk corresponding to V. If w=p(2)dx+q(2)dy in V, then the funec-

tion h(z):(%q)w—<ﬁ_~ p)y is in C*(V). We consider the equation
@.7) (20.) +(L0,) =1

For sufficiently small r<1, we can find a solution v(2)eC? in the
disk |z|<r. (2.7) implies D1<w—%*Dv>=0, and hence, by the pre-
vious lemma, there is a function u(z) in the neighborhood correspond-

ing to |z| <7 such that w——l—*Dv =Du.

Theorem 2.2. If weL2ﬂ01+", then w=wh+Du+—1—*Dv with
u, veC? and w,cH, ?

Proof. By Theorem 2.1, we have w=w,+ v, + o, with v, H, w,€ E
and w,¢E*. By Lemma 2.5, in a small neighborhood of every point

of R, we have w=Du0+%*Dvo with wug, v, €C¥V). Set in V,
(2.8) 0=w,+w,—Duy=—w,+ % * Do,

For every ¢eC¥V), we have (6, D¢)y=0 and <0, %D*¢>V=o. Hence,
by Lemma 2.3, 6 is in CY(V). Since w,=60—w,+ Du, and w2=%*Dv0

—60, we have w,, w,€C?, which prove the theorem.
4. We consider another decomposition. Define the subspace

(2.9) E=closure of {Du;ucC? in L2
Let H be the orthogonal complement of E in E®H. We have
Theorem 2.8. If weL*NC***, then o is decomposed into

(2.10) o=w0,+Du+ 1.Dv
¢

with u, veC® and w,cH, Duck and L «DvecE*,
g

(See References of the following article.)



