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146. Eigenfunction Expansion Associated with the
Operator —4 in the Exterior Domain

By Yasushi SH1zZUuTA
Faculty of Engineering, Kyoto University
(Comm. by Kinjir6 KuNuGl, M.J.A., Nov. 12, 1963)

1. Introduction. An attempt to use distorted plane waves for
expanding an arbitrary function which is square integrable was first
carried through by Ikebe in 1960 [1]. He treated the Schroedinger
operator — 4+ ¢(x) in the whole 3-dimensional Euclidean space E, where
4 denotes Laplacian and ¢(x) is a potential function. In the present
paper we consider the similar problem for the Schroedinger operator
of another type, i.e., of a rigid body. This means that no potential
exists, but negative Laplacian has a boundary condition on some
bounded, smooth and closed surface representing the rigid body.
Naturally the space with which we are concerned is not the whole
3-dimensional Euclidean space but the exterior domain of the surface.
The method used is essentially the same to the Ikebe’s one, except
for the use of the potential theory which seems indispensable in our
case. No explicit mention is made of the smoothness of the surface,
for it is rather complicated. The reader will find it in any textbook
on the potential theory.”

The author would like to express his hearty thanks to Professor
M. Yamaguti for many valuable suggestions and to Professor S.
Mizohata by whom he was inspired the existence of the problem.

2. Exterior Dirichlet problem. S denotes a sufficiently smooth,
closed and bounded surface in E. £ is the exterior domain relative
to S. Suppose that u(x) satisfies

(2.1) (—4—£Hu(x)=0, x€ R,
(2.2) u(@)=rf(p),  peS,
(2.3) LI e Po(r™1),

w(x)=e " 0(r™), f=Im £.*
Then the function is called the solution of the exterior Dirichlet
problem for the boundary condition f(p). Then we can show the

1) See e.g. [8]. We must also suppose, as is usually supposed in the potential
theory, for the surface that the following inequality holds.
—
flcos(np, xp) | dS,<C.
le—p|?
Here C denotes a positive constant independent of x.

2) Sommerfeld’s radiation condition and finiteness condition in the generalized form.
See [3].
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following:

Theorem 1. For arbitrary given continuous function f(p)
defined on S, there exists a unique solution of the exterior Dirichlet
problem (2.1), (2.2), (2.3), provided that Im x>0.

Along the usual line of potential theory we suppose at first that
the solution can be written in the form of double layer potential.

le.t~q
(24) )= [0 g (52725
m|e—q|
Here p(q) is unknown dens1ty on S, which satisfies the following
integral equation.
egt*lp-al

(2.5) f(p)=—p(p)+ f D) g~ (m

Let B be the Banach space of all continuous functions defined
on S. The kernel in the right member of (2.5) defines a bounded
operator in B. Moreover it turns out to be a completely continuous
operator. Let us denote it by 7.. Now we can make use of the
Riesz-Schauder theory.

Lemma 1. Let Im>0. Then I—T, is not invertible, if and
only if k% is an eigenvalue of interior Neumann problem of —A.

Thus the existence of the solution is evident for the case of
*¢{v,}, where {v,} denotes the set of all eigenvalues. For the proof
of this lemma, see [2], [8].

It is well known that

O=p<y;<py<+++—>00
For the case of x*c{v,}, Kupradze constructed the solution as a sum
of simple layer and double layer potential. See [3]. But we shall
not use the fact in the proof of Theorem 2. Uniqueness of the solu-
tion is guaranteed by Rellich’s theorem [4]. See also [3], [5]. The
following lemma will be needed later.

Lemma 2. Let Im k>0 and £*¢{v,}. Then (I—T,)' depends
continuously on g in the sense of operator norm.

3. Green function. Let H be the unique selfadjoint extension
in Ly(R2) of —4 with zero boundary condition on S. It is well known
that H has no eigenvalue and that its spectrum coincides with the
full interval [0, ). The resolvents of H are integral operators.
We shall freely use the fact that for arbitrary « (Im £>0) the Green
function of the exterior Dirichlet problem (2.1), (2.2), (2.3) is the
resolvent kernel of H. For the existence and the property of the
Green function, see [2]. It is also proved that the Green function is
symmetric.

4. Distorted plane wave. Let usintroduce v(x, k; £) and w(zx, k; £).
The former is the solution of the extrior Dirichlet problem (2.1), (2.2),
(2.3) with f(x)=—e™*". The latter is defined as follows.

)ds
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4.1) w(x, k; £)=e*"+v(x, k; £).
Then v(x, k) and ¢(x, k) are defined with the aid of wv(z, k; £) and
w(x, k; £), namely
(4.2) o, k)=v(x, k; | k|),
(4.3) o(x, k)y=w(x, k; | k|)=e*"+v(z, k).

Obviously ¢(x, k) satisfles (2.1) with «=|k|, (2.2) with f(p)=0.
It represents the distorted plane wave, in other words, it deseribes a
physical phenomenon, i.e., diffraction of a plane wave by the rigid
body S. We can regard it as an eigenfunction of H.®

5. Expansion theorem. We shall denote by M the 3-dimensional
Euclidean space formed by all wave vectors k. Then we have an
expansion theorem.

Theorem 2. (i) There exists a tramsformation Z from L,(Q)
into Ly(M), such that

(5.1) (ZF)(k)=(2x) T Lim. f o(w, k) f(x)d.

(ii) There exists a transformation Z' from Ly(M) into Ly(Q),
such that

(5.2) (Z'9)(@)=(27) " Lim. f oz, k) g(k)dk.
(i) Putting Zf =7, the following formula holds.
(5.3) F(@)=(27) T Lim. f oz, k) F(k)dk.
(iv) The transformation 7 is isometric.
(5.4) J17 @) dz= [ 17 0k)|* k.
(5.5) [ @@ da= [ 7(k)5(@) dk.
(v) If f(x) belongs to the definition domain of H, then
(5.6) (HS o) =) Lim. [ k] o(z, k)F (k).

It should be noted that this theorem only asserts the isometry
of Z. The result is unsatisfactory in this respect, because the uni-
tary equivalence of H and H, (self-adjoint extension of —4 in L,(E))
[6], [7] suggests the unitarity of Z.

6. Sketch of proof. H(x, y; £) (Im £>0) denotes the Green funec-
tion of the exterior Dirichlet problem (2.1), (2.2), (2.8). It is evident
that H(x,-; ) belongs to L,(2)N Ly(2), therefore its conjugate Fourier
transform exists. Put

(6'1) u(x9 k; I£)=(2n)_%fH(x, Y ,c)eik'ildy.

3) For the term *‘eigenfunction’’, see [1].
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In view of definitions in 4, the following fundamental relation holds,
provided that Im x>0.

6.2) w(@, k; £)=(2x) (| | 2= r2)ulz, k; £) ="+ o(x, k; ).

Now we shall define the transformation Z along the line given
by Ikebe [1]. The Parseval’s equality combining with (6.2) leads to
(6.3) fH(z, x; k) H(z, y; k)dz

¢ _ 1 f { 1 1

(2n)(k*—%%) v, \|k[*—&®  |K]’—&®

Here the symmetry of the Green function is taken into account.
Multiply both sides of (6.3) by g(x)f(y), where both f(x) and g(x)
belong to Cy(2). Integrate over QX with respect to x and y. After
interchanging the order of the integration, integrate with respect to
#(=Rek?) from a to 8 (v,.;<a<B<y,). Let e>0 (¢=Imk?). Thus
we have

}w(x, ; ©yw(@, T r)dk.

(6.4) (Eof, 0)—(Bf, )= [ Foak)dk,
Va<lk'<yg

where E, denotes the spectral resolutioﬂn of H, and

(6.5) Fio=@o" [o B f@ds,

(6.6) §00)=@0)"" [ 4G ) g(e)d.

Letting a—>v,_;, f—v,, and then summing up with respect to n, we
obtain

(6.7) (£, 9)= [ £ 5GR) d,

by virtue of the property of the spectrum of H. So far Z was only
defined for f(x)eC,(2). But the extension can be made in the obvious
way.

To define Z’, let us consider the integral

68) L= [ o) 7 dk=x) " [ gti){ [ o(w. b F@)d | a,

where f(x)eCy(Q), g(k)eCo(M). Moreover the carrier of g(k) is supposed
to be disjoint with the set {k;|k|=v, for some »}. This condition
for g(k) enables the calculation somewhat easier. L, (f) defines a
bounded conjugate linear functional on L,(2). Therefore by means
of Riesz’s theorem, there exists a unique ¢g*(x) in L,(2) such that
(6.9) L()=(g* f)
holds. The correspondence between g(x) and g*(x) is nothing but the
transformation Z’, of which norm apparently does not exceed 1.
The proof of (iii) of the theorem seems rather straightforward
and is omitted here. See [1]. The formula
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(6.10) B o= [ Faaodk
\EY < V7
immediately leads to the proof of (v) of the theorem.
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