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22, Construction of Finite Commutative z-Semigroups

By Miyuki YAMADA
Department of Mathematics, Shimane University
(Comm. by Kinjir6 KuNuGl, M.J.A., Feb. 12, 1964)

§ 1. Introduction. As defined by Tamura [4], a semigroup is
called a z-semigroup if it has a zero element, 0, but has no idem-
potent except 0. In particular, for a finite commutative semigroup
S it is easily seen that S is a z-semigroup if and only if it satisfies
the following two conditions:

(1) S has a zero element 0
and (2) SDS*D..-DS?={0} for some positive integer p.”

If S\S? is non-empty, every element of S\S? is called a prime
element of S.

In the case of p=1 or p=2, S satisfies the following

(8) S={0}
or (4) xy=0 for any z, yeS,
respectively.

Such a semigroup S is called a trivial z-semigroup or a mnull
semigroup, corresponding to p=1 or p=2,

Now, the problem of construction of finite commutative z-semi-
groups occupies an important part in the problem of construction of
finite commutative semigroups. In this paper, we shall deal with
this problem and present a method of constructing all possible com-
mutative z-semigroups of a given order. The proofs are omitted
and will be given in detail elsewhere.?

§ 2. Commutative z-semigroups of order n. At first, we have

Theorem 1. For any positive integer m, there exists a com~
mutative z-semigroup of order m.

Let G be a semigroup with a zero element 0. The subset A of
G, where A={x: ze(G, xy=yx=0 for all yeG}, is a subsemigroup of
G. We shall call A the annihilator of G.

Lemma 1. The annihilator of a non-trivial, finite commutative
z-semigroup has a non-zero element (see also Tamura [3]).

Lemma 2. Let S be a commutative z-semigroup of order m—+1
(nz1). Let 0 be the zero element of S and let u be a non-zero element
contained in the annihilator of S. Then the set {0, u} is both a null
subsemigroup and an ideal of S, and the factor semigroup D=S/{0, u}
of S mod {0, u} in the sense of Rees [2] is a commutative 2z-semi-

1) ADB means ‘ B is a proper subset of A °.
2) This is an abstract of a paper which will appear elsewhere.
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group of order m. Further, in this case S is a commutative extension
of {0, u} by D in the semse of Clifford [1].* Accordingly, S 1is a
commutative extemsion of a mull semigroup of order 2 by a com-
mutative z-semigroup of order n.

Conversely, we have

Lemma 8. A commutative extension of a null semigroup of
order 2 by a commutative z-semigroup of order m is a commutative
z-semigroup of order n+1.

Remark. For any given null semigroup N of order 2 and for
any commutative z-semigroup Z of order =, existence of a com-
mutative extension of N by Z is proved by the following example:
Let N={0, u}, where 0 is the zero element of N. Let 0 be the
zero element of Z, and put S=Z\0+{0, u}.

Then S becomes a commutative extension of N by Z by the
multiplication o defined as follows:

o y:{ xy if x, yeZ and xy=0,
0 otherwise.

Combining Lemmas 2 and 3, we obtain the following

Theorem 2. A commutative z-semigroup of order m+1 (n=1)
s a commutative extension of a null semigroup of order 2 by a
commutative z-semigroup of order m, and vice-versa.

Now, we consider the problem:

(A) Construect all possible commutative z-semigroups of order n
for a given positive integer n.

For n=1 or 2 this problem is easily solved, since a commutative
z-semigroup of order 1 or 2 is a trivial z-semigroup or a null semigroup
respectively.

Hence, the problem (A) is reduced to the following problem:

(B) We assume that we can construct all possible commutative
z-semigroups of order m (m=2). Construct all possible commutative
z-semigroups of order m-1.

Further, by Theorem 2 the problem (B) is reduced to the following
problem:

3) Let K be a semigroup. Let L be a semigroup with a zero element 0, having
no element in common with K. Let M=K+ L\{0}.

If a binary operation o in M satisfies the following

=gy if «,y€K or if x, y€L and zy+0,
M) { (1) zey { €K otherwise,
(2) (@oy)oz=wmo(yo2),

then the resulting system M(e) becomes a semigroup, which is called an extension of K
by L. If K and L are commutative, we can consider the case in which M(c) becomes

a commutative semigroup. In this case, we shall call M(e) a commutative extension of
K by L.
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(C) Construct all possible commutative extensions of a given
null semigroup of order 2 by a given commutative z-semigroup of
order m (m=2).

We shall deal with this problem (C) in the next paragraph.

Remark. The whole discussion and result of this paragraph
still hold, even if we substitute the terms ‘z-semigroup’ and ‘ex-
tension’ for the terms ‘commutative z-semigroup’ and ‘commutative
extension’ respectively. Accordingly, the problem of constructing
all finite z-semigroups is reduced to the following problem:

(C*) Construct all possible extensions of a given null semigroup
of order 2 by a given z-semigroup of order m (m=2).

§ 3. C-factors of a finite commutative z-semigroup. Let N be
a null semigroup of order 2, and put N={0, 2}, where 0 is the zero
element of N. Let T be a finite commutative z-semigroup having 0
as its zero element. Let T*=T\{0}, and let S=N-+T* Let 2
={(x, ¥) : 2y=0, x, yeT}.

Then, any subset 4 of Q satisfying the following conditions (1)-
(3) is an ideal of the direct product T'X T':

(1) (¢ 0)ea for any teT,
' (2) (tv,w)ed implies (¢, vw)e,
and (3) (v, w)ed implies (w, v)e.
Such a 4 is called a commutative extension factor (abbrev., C-factor)
of T. It is easy to see that 2 itself is the greatest C-facter of 7.

Under this definition, we have

Theorem 8. Let A be a C-factor of T, and define multiplication
o in S by the following

[ xy iof x, yeT*, xy=x0 or if x, yeN

(E)

0 if xeN or yeN
®) wo y=l 0 if (%, y)ed, 2, yeT* and xy=0
2 if (x, y)€d, x, yeT* and xy=0.
Then, S(o) becomes a commutative extension of N by T. Further,
every commutative extension of N by T s found in this fashion.
By Theorem 3, the problem of determining all commutative ex-
tensions of N by T is reduced to the problem of finding all C-factors
of T. Next, we shall consider this problem.
Theorem 4. Let
I ={(tyby, tg) : tyy by, to€ T, ttoby =0} U{(y, taty) : by, by by T, £,tot, =0}
Then,
(1) I is a C-factor of T,
(2) I'=2\{(z, y):x, y are prime elements of T}
and (3) iof Q242" and tf A satisfies the condition (3) of (C), then
A is a C-factor of T.
If a sequence ©={t, t, ty, ts, by, +, t,} of elements of T, where r
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is an even integer =2, satisfies

(1) (@ t)eR

and (2) t=tyby, tob,=tst, tobs=tste, - ) ty_str_g=t,_t,

(t=t,t, in the case of r=2),
then & is called a (¢, t,)-chaitn (in T'). Further, in this case the
ordered set (t,_, t,_;, t,) is called the final part of &. It should be
noted that for a given (¢, t,)€Q2 such a (¢, ¢,)-chain is not necessarily
unique even if it exists.

Lemma 4.

(1) If (to, ty, t;) is the final part of a (¢, 0)-chain, {t, %, t, ts},
then (tot, t,)=(0, ty) and (t, tot)=(ts, 0).

(2) If (t,_5t._y,t,) s the final part of a (t, 0)-chain and if
rz4, then (t,_5 t, 4, t,) 18 also the final part of some (0,t')-chain.

Using this lemma, we have

Theorem 5. The least C-factor A, of T is as follows:

AOZ{(/U’ 0) : ?)GT}U{(O’ w) :weT}U{(tr—2tr—1’ tr) : (t'r-Zv tr—l’ tr) 'L-S the
Jfinal part of a (0,t)- or (t, 0)-chain for some teT}U{(t, t, ot._):
(t,_s t, 1, t,) is the final part of a (0,t)- or (t, 0)-chain for some teT}
={(v, 0) : ve T}U{(0, w) : weTYJ{(t,_st, -1, t,) : (tr_2 o 1, t,) 18 the final
part of a (0, t)-chain for some teT}U{(t., t, ot 1):(t st 1, 1,) 18
the final part of a (0, t)-chain for some teT}.

Further, we have the following

Theorem 6. Let 4, be a C-factor of T and let (u, v) be an element
of Q. Then, the C-factor 4 of T generated by {4, (u,v)}, that is, the
least C-factor comtaining 4, and (u, v) is as follows:

A=4,U{(u, YU {(v, W} U{(E,_2t, -1, t.) 2 (b2 o1 T,) s the final part of
a (u,v)- or (v, w)-chain}U{(t,, t,_ot,_1): (tr_ar t,o1n t,) 18 the final part
of a (u, v)- or (v, w)-chain}.

For any C-factor 4 of T and for any subset & of 2, let I'(4, &
be the least C-factor of T containing 4 and £. Put {ay, as, a3, +,a,}
=&, where a;€0. Then, we can easily prove the following relation:

r(r( -, {ad), {a), {ash), - - - {a, ), {a. ) =14, 8).
Now, by Theorems 5 and 6 we can obtain all C-factors of 7. In
fact: {I"(dy, 3): 3C0Q\4,} is the totality of all C-factors of T.

Remark. In the case in which T is not necessarily commutative,
we can also introduce the concept of E-factors of T as follows: A
subset I of Q satisfying the condition

(1) (¢, 0)ell and (0, t)ell for any teT
(E*) and (2) (tv, w)ell implies (¢, vw)ell, and (¢, vw) €Il implies
(tv, w)ell
is called an extension factor (abbrev. E-factor) of T. It is clear
that Q itself is the greatest E-factor of 7. Let O={(x,y):x,yecT}.
Define multiplication o (©) in © as follows:
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(2, ) o (v, w)=(2v, wy) ((x, ¥)O(v, w)=(v, yw)).

Then, the resulting system 6(c) (6(©)) becomes a semigroup. It is
clear that any E-factor of T is a left ideal of ©(c) and a right ideal
of ©(0). Also, it is easily seen that both 6(c) and ©(0©) coincide
with TXT if T is commutative. Hence, if T is commutative any
E-factor of T is an ideal of TXT. Every C-factor of a finite com-
mutative z-semigroup is an E-factor, but the converse is not true.

We have

Theorem. An E-factor A of a finite commutative 2-semigroup
1s a C-factor if and only if it satisfies the condition (8) of (E).

Finally, we obtain the following extension theorem for the case
in which T is not necessarily commutative:

Theorem. Let A be an E-factor of T, and define multiplication
o in S by (P) of Theorem 3. Then, the resulting system S(o) becomes
an extension of N by T. Further, every extension of N by T is
Sfound in this fashion.
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