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§ 1. The quasi-Hausdorff transformation (H*, ) is defined as
transforming the sequence {s,} into the sequence {h}} by means of
the equation

oo

ne=33 (%), [ a—ry-ra),

v=n

where the weight function Y(r) is of bounded variation in the
interval 0<r<1, This transformation is regular if and only if

Y(1)—¥(+0)=1.
We may assume, in the following, that
v(1)=1, Y(+0)=0.
Corresponding to any fixed number » with 0<r<1, if we put
Y(x)=e,(x), where
e,(x):{o for 0<a<r
1 for r<x<l1,
then the quasi-Hausdorff transformation reduces to the circle trans-
formation (7, 7).

The Lebesgue constant of order = for the method (H*, ) is
then defined to be

1.1) L*(n; )=

SIn (V+%)t n+1 7
f ipa = n<”«> 2sindt (I=m)7"d¥ ()}

As is well known, if L*(n;¥)—>c0 as m—>oo, then there is a
continuous function whose Fourier series is not summable (H*, )
for at least one point.

The Lebesgue constants for the method (7, ) were studied by
L. Lorech [4] and by the author [2]. On the other hand, first A. E.
Livingston [38] and recently L. Lorch and D. J. Newman [4] studied
the Lebesgue constants for the regular Hausdorff methods of sum-
mability in detail. For the definition and the properties of the
Hausdorff methods, see, e.g., G. H. Hardy [1]. We shall study, in
this note, the Lebesgue constants for the quasi-Hausdorff methods
of summability.

§2. From (1.1), we get
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2.1) ”{;*(n )= -
sflnuu)f T +,,em),,+1}d«1»(r>\.

Here we put
1

— TgCuU,7)
1_62iu_|_,r92iu p(u, ,r)e ’

then
1—cos 2u+7r cos 2u = cos q(u, 1)
sin 2u—7 sin 2u= sin q(u, 7)
(2.2) {rp(u, r)f= -

r2+4(1—r) sin®* u
0<rp(u, 1)<1,
where rp(u, r)=1 if, and only if, #=0 or r=1.
Then, from (2.1), we obtain
L*(n; )=
2 z/2 1—0 1
==] du f — gy, 7) sin {(n+1)q(u, 7)+ (2n+1)uldy(r)+
sin w

T

+ S @RI Fy 1) p1-0)]),
sin %

1 prtlginsDu
tu 1 < —-..__> { ' . }
!( ) sin u O‘Z (1_e2lu+,r621,u)n+1

for 0<u£%, 0<r<1 and tends to zero as m—>oc except on the line

Since

<M< oo

r=1, we have
/2 1—0
du‘f %,’dwlpnﬂ(uy ) sin {(n+1)q(u, ) +2(n+Duldy(r)+
0

+ S CrEDU g1y (1-0)T|+0 1)

sin »
as n—>oo,
§ 3. From the previous paper [2], it is easily seen that the
estimate, for small u,

(3.1) q(u, r)= 21

" u-+0u®)

for fixed r holds uniformly in r for 0<o<r<1 with any fixed .
Here we shall estimate

3.2) Li(m )=
=2 [ S (0) G ramryave)

2 sin 4t
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“‘% rm*ipn i, 1) sin{(n+1)g(u, r)+2(n-+Lyudir(r)+

il
2 oo
o&;
oF
_s
W\

S @R g 1) (1 -0)] | +o (D).

sin %

S DU 1) (107
sin u

_2 mdul f L pneiprea(y, 7) sin 2(n+1) L di(r)+
3 u "

T
0
S @D [y 1) g1 —0)])|
sin %
From the previous paper [2], it is easily seen that if 1<m<e,
then
_8_:1:'21;2
(3.3) ripi(u, ry<m =
holds for = in the interval 6<»<1 and for sufficiently small »>0.

Now we shall take ¢>0 such that, in the interval 0<u <o, (3.1)
and (8.3) hold simultaneously. Then

|L] <O(n+1) f du f gyt | d(r) | +

/2 1—-0
+4 (T f i, v) | di(r) .
g / f

From the Lebesgue principle of dominated convergence, we have
lim I,=0. Hence

700

(8.4) Li(m ‘/’)=—2— ﬂzdu\fl—oi”r””p””(u, r) sin 2(n+1) L dy(r) +
T ) u r

S @n+Dw gy g1 0)]|40 (1)
sin v

§ 4. Here we shall prove the following

Theorem 1. If the weight function (r) s a step-function
which 18 continuous at the origin, then
(4.1) L*(n; ¥)=C*(¥) log n+o(log m) as n—>oo,
where

42 =2 v-v1-0)+L K|S ¥+ —+E—0]-
sin—

3

Here &, is the k-th discontinuity (jump) of ¥(r) and the summation
extends over all such (possibly countably infinite) values, M{f(u)}

u
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represents the mean value of the almost periodic function f(u).
This theorem corresponds to the following one of L. Lorch and
D. J. Newman [5]. They studied the Lebesgue constants L(n;)
for the general regular Hausdorff methods of summability in detail:
Theorem 2. Under the same condition on Y¥(r) as in Theorem
1, we obtain

4.3) L(n; ¥)=C(¥) log n+o (log n) as n—>oo,
where
48 =2 H ) —¥A—0) |+ HI DV E+ O~V (E—0)]-

sin &u |}
We see easily symmetric relation between C*(y) and C(y).
(References are listed at the end of the next article, p. 195.)



