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54. A Note on the Galois Cohomology Group of the Ring
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(Comm. by Zyoiti SUTUNA, M.J.A., April 13, 1964)

1. Introduction. Let K be a finite Galois extension of a finite
algebraic number field F and let G--G(K/F) be the Galois group of
K/F. Denote by o and or the rings of integers in K and F respec-
tively. As usual, we shall denote by H(G, A) the r-dimensional Galois
cohomology group of G acting on a G-module A. Following Artin-
Tate-Chevalley, we shall consider Hr(G, A) also for negative r.

In (1) we proved the following
Theorem 1. If we assume that the O-dimensional Galois coho-

mology group H(G, o) of o with espect to K/F is trivial, then the
Galois cohomology group of o with respect to K/(2 is trivial for every
dimension and for any intermediate field 12 of K/F.

Later we obtained in (2) and (3) the following
Theorem 2. Let K/F be a cyclic extension of prime order p.

Then, for every dimension r, all the Galois cohomology groups
Hr(G, o) of o with respect to K/F are isomorphic with each other.

From these results, it is generally conjectured that all the Galois
cohomology groups H(G, o) of o with respect to K/F have the same
order. In this note we shall prove that this is in fact the case if
K/F is a cyclic extension of any finite degree.

2. Let F be an algebraic number field of degree m and let K/F
be a cyclic extension of degree n. Denote by G--G(K/F) the Galois
group of K/F. Then there exists a number B in K, by the theorem
on existence of normal basis,) such that the conjugates B), B(’,...,
B-) of B form a basis of K over F, i.e. a normal basis of K/F.
Since we may choose an integer c such that cB becomes an integer
in K, we can assume from the beginning, without losing generality,
that B is an integer in K.

Further, let {o,o,.-., o} be an arbitrary integral basis of F,
and denote by o* the module generated by oB) (i=1, 2,..., m; 3"--0, 1,
.., n--l). Since oB) (i=1, 2,..., m; 3"=0, 1,..., n--l) are linearly

independent over the rational number field Q, the rank of the module
o* is N=mn, and o*=oB)q-oB()+...+oB-) is a direct decom-
position of the module o*. Here, o means the module of all integers

1) Cf. e.g.E. Noether [4, M. Deuring [5] etc.
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in F: oF= Ewl, w.,’", om]. On the other hand, the rank of the module
of all integers in Kis also N--ran. Therefore, the index o:*

of * in is finite, namely the residue module --o/o* of modulo
o* is a finite module. Since and * are G-modules, the residue
module can be regarded as a G-module.)

Since G is a cyclic group, from the well-known theorem in coho-
mology theory8) we obtain Hr(G, oK) " H(G, K), H2r-I(G, K)H(G, oK)
for every integer r. We generally denote by Q(M) the Herbrand
quotient H(G,M)J/[H(G,M)] of a G-module M if H(G,M) and
H(G, M) are finite groups, i.e. if M is an Herbrand module. Since
o* is a G-regular G-module, the Galois cohomology group H(G, *)of

* is trivial for every dimension r. Therefore, the module * is an
Herbrand module and the Herbrand quotient Q(o*) of * is equal to
1. Since the module is a finite G-module, the Herbrand quotient
Q() of is defined and equal to 1. On the other hand, since the
module is a finitely generated G-module, is an Herbrand module
and the Herbrand quotient Q(o) of is equal to Q(o*).Q()-I.

Consequently, the order of H(G, ) is equal to the order of
H(G, o). Thus we have the following

Theorem 3. Let K be a finite cyclic Galois extension of a finite
algebraic number field F, and let G--G(K/F) be the Galois group of
K]F. Denote by o the module of all algebraic integers in K. Then
the Galois cohomology group Hr(G, oK) of with respect to K/F has
the same order for every dimension r.
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2) For these three G-modules OK, o*, the sequence 0-*O*--0K--*5"--*0 is clearly exact,
and this induces the following exact sequence of Galois cohomology groups: --.H(G, 0*)
--.Hr(G, oK)--Hr(G, ’5)--.H+(G, *)-*. Since * is a G-regular G-module, we obtain the fol-
lowing isomorphism for every dimension r and for any Abelian Galois group G:Hr(G, "g)
Hr(G, "5).
3) Cf. e.g.C. Chevalley 6.


