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99. The Area of Discontinuous Surfaces

By Kanesiroo ISEKI
Department of Mathematics, Ochanomizu University, Tokyo
(Comm. by Zyoiti SUETUNA, M.J.A., Sept. 12, 1964)

1. Introduction. Let us use the term rectangle synonymously
with nondegenerate closed interval of the Euclidean plane R:. By
a nonparametric summable surface on a rectangle we understand a
surface of the form z=F(x,y), where F' is a summable function
defined on the rectangle and assuming finite real values. For brevity,
such a surface will often be referred to as an NS surface.

A few authors have already treated the area theory of NS (or
more general) surfaces, Cesari [1] and Goffman [8] being representa-
tive. The greater part of this paper is concerned with a further
contribution to the theory, in which another definition of area will
be given to NS surfaces and will be shown equivalent to those of
Cesari and Goffman.

We shall apply then our. leading idea to parametric summable
surfaces (§6), to obtain a concept of area which, in the special case
of parametric continuous surfaces, coincides with the Lebesgue area.

If one seeks to generalize the various results of the existing
area theory so as to be valid for parametric summable surfaces, there
arise in a natural way a number of research problems. Some of them
will be stated toward the end of the paper.

2. Area of nonparametric summable surfaces. For any con-
tinuous function G on a rectangle I, the Lebesgue area of the surface
2=G(x,y) will be denoted by S(G) or S(G;I,), as in [Saks 4]. If
G* is another continuous function on I, and F is any nonvoid subset
of I, the symbol o(G,G*; E) will mean the ordinary distance on E
between the two functions, i.e. the supremum of |G(w)—G*(w)| for
weE. If E is the void set, the same symbol is understood to vanish.

Let I=[ay, b; ay b;] be a rectangle and let % stand for the posi-
tive numbers <2°!min (b;—a,, b,—a,). We shall write, in the sequel,

I,=[la,+h,b,—h;ay+h,b,—h].
Given on I a finite summable function F, we understand by the
integral mean of F (for squares of side-length 2 k), the function

h h
Fi, y>=—4§; [ [ Pt ytoyduds,
—h —h

where the point {x, y) ranges over the rectangle I,. It is well known
that F, is then a continuous funetion on I,.
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This being said, let now G represent the continuous functions
on I. Given F' as above, we define the area of the nonparametric
summable surface z=F(x,y) to be the lower limit of the Lebesgue
area S(G;I,) as h—>0 and o(F,, G; I,)>0 simultaneously. This area
will be written L(F') or L(F;I). Explicitly, L(F') is the supremum
of L™(F) for all >0, where L”(F) means the infimum of S(G;I,)
for all pairs (h,G) such that A<y and p(F,, G; I,)<.

REMARK. In view of the definition of the Lebesgue area it is
easy to see that we may use, in the above definition of L(F"), poly-
hedral functions on I in place of the continuous funections G.

THEOREM. If, in particular, the function F 1s contiviuous on
I, we have the equality L(F)=S(F").

PRrROOF. It is obvious that o(F,, F';I,) tends to zero with h.
Hence L(F)<S(F') for every >0, and so L(F)<S(F).

It remains to derive the converse inequality. We fix in I° (the
interior of I) a rectangle J and suppose 7>0 so small that I,DJ.
Let 2<% be arbitrary and let us consider any continuous function
G on I such that po(F,, G; I,)<7. Noting the inclusion I,DJ, we have
S(G; J)ES(G; I,), and so the definition of L(F') gives, for fixed 7,
(1) inf S(G; J) < L(F),
the infimum being taken with respect to all pairs <4, G)> under con-
sideration.

Now o(F,G; J)<o(F,G; 1)< p(F, F,; I,)+7, so that the distance
o(F,G; J) tends to zero with », uniformly in G. Hence, making »—0
in (1) and using the lower semicontinuity of the Lebesgue area, we
obtain in the limit S(#"; J)<L(F'). Since J is arbitrary, it follows
that S(F)<L(F'), which completes the proof.

3. The Goffman area. If F' and F'* are a pair of finite sum-
mable functions on a rectangle I, we shall write

oF, F*; B)=(B) [ [|F (@, 9)—F*(@, )| dady
for any measurable set ECJI. When especially E=1I, this symbol
will often be abbreviated to o(F, F'*).

We define the Goffman area, ®(F;I) or @(F), of an NS surface
2=F(x,y) on I to be the lower limit of the Lebesgue area S(P;I)
as 6(F, P) tends to 0, where P is an arbitrary polyhedral function on
I, This slight modification of the original definition [Goffman 3] is
equivalent to the latter.

If J is a subrectangle of I, the partial function F|J clearly
determines an NS surface on J. We write O(F; J)=0(F|J) and find
readily that @(F; J) is monotone nondecreasing as a function of J.

Cesari [1], prior to Goffman [8], introduced a definition of the
area of a surface z=F'(x,y), where F' is any finite measurable func-
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tion on a rectangle. But it was proved in [3] that the two notions of
area are equivalent for all NS surfaces. We shall now proceed to show
that, for the same class of surfaces, the Goffman area coincides with
ours. By the way, it will be seen that our proof of this fact is
independent of the two papers just referred to.

4. Lemmas. It is convenient to divide our preliminary con-
siderations into a few lemmas. Throughout the section, F' will mean
a finite summable function on a rectangle I.

LEMMA (i). The distance o(F,, F'; I) tends to zero with h.

This may be established as for the proposition (iii) at the bottom
of p. 463 of [Cesari 2].

LEMMA (ii). Suppose that the origin of the plane belongs to the
rectangle I and let ¢ denote positive numbers <1. If we define
F(w)=F(cw) for wel, then

(F°, F;I)>0 as c—1.

PrROOF. We observe first that F'° as thus defined is a finite
summable function on I. To prove the lemma, we shall utilize the
same technique as on p. 92 of [Saks 4].

Given any ¢>0, there exists a number 6>0 such that, whenever
XcCI is a measurable set with measure |X| <34,

(2) @) [ [1F@, v)| dady<e.

This inequality implies that, if X is any such measurable set and if
we write cE={cw;weE} for sets E in the plane,

(3) &) [[1F<|dedy=c"-X) [ [ | F|dwdy<efe*.

On the other hand, by Lusin’s theorem, there exists in /° a com-
pact set K on whieh F is continuous and for which |I—K|<d/2.
Let 0 be a number of the open interval (277, 1) such that

¢ 'KCI and p(F“, F; KNe'K)<g/|I]
whenever ¢<c<1l. We then have, for such c,
(4) §(F“, F; KN K)= | 1] (/| I]) =e.
But evidently |I—KNc¢'K|<|I—K|+|I—c¢'K|<d, and therefore,
by (2) and (8) above, o(F, F; I— K¢ *K)<be whenever ¢<lc<1.
If we add this inequality to (4), we obtain 6(F, F'; I)<6¢, and this
completes the proof.

LeEMMA (iii). The Goffman area O(F;I) is the supremum of
O(F; J) with respect to the rectangles JCI®.

ProoOF. Without loss of generality we may assume that the
origin is in I°. Let 0<c¢<1 and consider any polyhedral function P
on the rectangle ¢cI. Then P!!=¢ 'P“ is also polyhedral on I and
we verify easily S(P' I)=c¢2-S(P;cl) as well as

O(Ftl, Pl [N =c 2. §(F, P; cl),
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where again Fll=¢ 'F“, It follows that, for fixed c,
(5) CEOF™“, INSO(F; cI)S<O(F; I).
On the other hand, lemma (ii) and the two relations
O(FL F;, I)So(F™, F, I)+o(F, F; I),

oF, FO; )=(—c)-(eD) [ [1F|dedy

together imply that 6(F™, F'; I)—>0 as ¢—>1. But the Goffman area
is clearly lower semicontinuous with respect to the underlying distance
0. Consequently

lowerllim O(F* I)=0(F; 1),

and so we deduce from (5) that @(F;cl)->@(F;I) as c—>1. The
assertion follows now directly.

LEMMA (iv). If G is a comtinuous function on the rectangle I,
we have S(G,; 1)< S(G; I) for every h>0 considered in §2.

ProoF. If H means the same functional as introduced on p. 174
of [Saks 4], the formula (7.7) on p. 180 of the same treatise implies
that H(G,ep; 1,.,)<H(G; I) for every natural number % such that
(2n)"* belongs to the set {k}. Quite similarly we can obtain the slightly
stronger result that H(G,; I,)<H(G;I) for every h. On the other
hand, by Rado’s well-known theorem [Saks 4, p. 179], the functional
H coincides with the Lebesgue area for any continuous function on
a rectangle. Hence the result.

5. Identification of the Goffman area with ours.

THEOREM. We have O(F)=L(F) for every finite summable func-
tion F on a rectangle I.

Proor. We first show that @(F)<L(F'). Suppose that J is a
rectangle fixed in I° and let P stand for polyhedral functions on I.
We confine >0 to so small values that I,DJ. Then, for any ~ and
any P,

o(F, P; J)<o(F, P; I,)<o(F, Fy; I,)+6(F), P; 1,).
Since o(F, P; L)< |I|-p(F,, P;1,), it follows in view of lemma (i)
that 6(F, P; J)—0 when % and p(F,, P; I,) tend simultaneously to zero.
Therefore, by the definition of @(F';J) and the remark of §2, we
deduce at once @(F;J)<L(F). As J is arbitrary, the desired ine-
quality ensues by lemma (iii).

We have to derive further L(F)<®(F). Let P be as above and
let & be arbitrary so long as I, exists. If 3(F, P; I)<4h? then plainly
0(F, P; K)/(4h*)<h for all the rectangles KCI, and therefore o(F,, P,;
I)<h. But S(P, I,)<S(P;I) by lemma (iv). Consequently, making
h—0, we obtain in the limit L(F)<O(F).

6. Area of parametric summable surfaces. We shall call para-
metric summable surface (or PS surface, for short) on a rectangle
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I, any map T of I into the ordinary space R® such that the three
coordinate functions of 7 are summable on I.

The idea that led to our definition of the area of NS surfaces is
equally available for PS surfaces and will yield a new kind of surface
area. We are interested in this area because it constitutes an ex-
tension of the Lebesgue area, as we shall show soon.

Given on a rectangle I a parametric summable surface 7', write
explicitly T(w)=<(X(w), Y (w), Z(w)> for wel, so that X,Y,Z are
summable functions on I. We define 7,=(X,, Y, Z,> for each
h>0 of §2. This map T, is clearly a continuous parametric surface
on I, and will be termed integral mean of T (with respect to squares
of side-length 2h).

Let R stand for parametric continuous surfaces on I. Given T
as in the above, we shall understand by the area of T the lower
limit of the Lebesgue area S(R;I,) as h—>0 and o(T,, R; I,)—~>0 simul-
taneously. (The latter symbol, of course, means the maximum of
| T, (w)—R(w)| on I,). The new area will be written L(T) or L(T; I).

THEOREM. We have L(T)=S(T) whenever T 1is a continuous
parametric surface on a rectangle.

The proof of this is almost the same as for the nonparametric
case (see §2).

THEOREM. If an NS surface z=F(x,y) on a rectangle I is in-
terpreted as a PS surface T with the coordinate functions

Xw)=2, Y(w)=y, Zw)=Fw) (w={,y)el),
it holds that L(T)<L(F).

ProOF. It is obvious that X,=X,Y,=Y, Z,=F, for each A>0
of §2, so that T',=<(X, Y, F,>. If G is an arbitrary continuous function
on I, then T*=(X,Y,G) is a parametric continuous surface on I and
fulfils, for every &, the relations

o(T,, T*; I)=p(F,, G; I,) and S(T*; 1,)=S8(G; 1),
the latter being a well-known property of the Lebesgue area. It
follows that L(T) does not exceed the lower limit of S(G; I,) as h—>0
and o(F,, G; I,)>0. In other words, we have proved L(T)ZL(F).

7. Area of planar summable maps. A map T of a rectangle
I into the plane R? will be called summable if both of its coordinate
functions are summable over I. We can define the area, L(T) or
L(T; I), of such a map in the same way as for PS surfaces. The
details are left to the reader.

8. Problems. (i) Investigate whether the equality L(T)=L(F)
holds in the last theorem of §6.

(ii) Generalize our definition of the area of NS surfaces [or PS
surfaces] so that the new area exists for all nonparametric [or para-
metric] measurable surfaces on a rectangle. Examine whether, in
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the nonparametric case, the Cesari area (see §3) always coincides
with the new one.

(iii) Is the area of PS surfaces invariant under Lebesgue equi-
valence [Cesari 2, p. 62], like the Lebesgue area of continuous para-
metric surfaces? Explicitly, let  be a homeomorphism of a rectangle
I into another rectangle I*. If T and T* are PS surfaces on I and
I'*, respectively, such that T(w)=T*(6w) for all wel, does it follow
that L(T)=L(T*)?

(iv) Extend, if possible, the Kolmogorov principle for the Le-
besgue area [Cesari 2, p. 53] to the area of PS surfaces. Explicitly,
let = be a continuous map of the space R® into itself such that

|z(p)—c(p)| = |p—p'| whenever p,p’cR"

If T is any PS surface on a rectangle I, the composite map T*=7T
is likewise a PS surface on I. In fact, T* is a measurable map, and
if w, denotes the centre of I, we have

| T () — T*(wy) | < | T () — T(awy) |
for all wel. So that |T*(w)—T*(w,)|, and hence the surface T'*
itself, must be summable on I. Now the problem requires us to
examine for validity the inequality L(T*)<L(T).

(v) Let T=<(X,Y,Z)> be a PS surface on a rectangle, and con-
sider the three planar maps T'=<(Y, Z), T*={Z, X), T*={(X, Y) which
are clearly summable (see §7). Is it always true that

L(T)=sL(TH+L(TH+1L(T*?

(vi) The two notions bounded variation and absolute continuity
are very important in area theory, as is well known. Generalize
these notions so as to become available for PS surfaces on a rectangle.
What results will then hold in place of the First and Second Theorems
of [Cesari 2, §1]?

REMARK. Needless to say, problem (v) is closely related to part
of problem (vi).
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