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Let T() be such a function as was defined in the preceding paper
(that is, in Part XIII) cf. Proc. Japan Acad., Vol. 40, No. 7 (1964).
In the present paper we shall derive another formula of the expan-
sion of T() and shall discuss some of its applications.

Since, as we have already shown in Part XIII, the form of the
expansion by series or by integrals of T() outside a suitably large
circle with center at the origin is exactly similar to that of the
function S() in Theorem 1 cf. Proc. Japan Acad., Vol. 38, No. 6,
265-267 (1962), we can establish the following propositions for the
question as to whether the ordinary part of T() is a polynomial
in or a transcendental integral function.

Proposition A. Let T(), {}=1,,,..., D, (j=l, 2, 3,..., n), and p
be the same notations as those used in Theorem 33 respectively, and
Mr(p, 0) the maximum modulus of T() for all the points on the
circle I1 =p. Then a necessary and sufficient condition that the
ordinary part of T() be a polynomial in of the degree less than
or equal to d is that there exist a positive constant K and a suita-
bly large number a such that

Mr(r, O) __< gr
for every r with max sup I I, max (max zl) <a<v< oo cf. Proc.

Japan Acad., Vol. 38, No. 10, 706-707 (1962).
Proposition B. Let T(), p, and Mr(p, 0) be the same notations

as above respectively. Then a necessary and sufficient condition that
the ordinary part of T(2) be a transcendental integral function of
the order d>0 is that

lim log log Mr(p, 0) =d>0 cf. loc. cit., 708-709.
log p

In fact, these propositions can be shown by replacing S(2) in the
proofs of Theorems 13 and 14 by T(2). As for Proposition. A, how-
ever, we can simplify it by making use of the following theorem
derived from the already established expansion by series of T(2)
outside a suitably large circle with center at the origin.

Theorem 38. Let T() and p be the same notations as those used
in Theorem 33 respectively, and let
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ck___il ’f"= T(2)d22k/ (k--0, /1,_ /2,._ i--s/l),

where the circle ]21--P is positively oriented. Then

(33) T(2)--,cp2P+,c_v2-p (p=< [2] < );
p0 p=l

and c2 with domain {: 2] < } extended to the origin expresses

the ordinary part R(2)of T(2) and is a finite or an infinite series
according as R(2) is a polynomial in 2 or a transcendental integral

function, while c_v2- expresses the sum of the first and the sec-
P=l

ond principal parts of T(2) in the domain {2:p ]2]} extended to the
point 2-- and is essentially an infinite series.

Proof. Let Z(2) denote the sum of the first and the second prin-
cipal parts of T(2), and let

a Tg T(pet) cs pt dt (=0,1, 2, ...)

b T T(pe) sin t gt (--1,2,8,...).

hen, as already shown in the reeeding aer,

T(pd)=o 1 (e 1

where

for every with O<c<oo and for x becoming infinite and

-z
for every with 0<<1 and for tending to zero. On the other
hand,

%--ib ---. T(peit)e -pt dt-- ....d2

and similarly

a+ibp- 1 T(2) d2.

These results enable us to assert that

T(2)--,%2+,o-p- (P< II <
In addition, since by Cauchy’s integral theorem we have

2ri 2+ 2zi 2+
lal.=,o I1--o’

where ’ is a positive constant less than such that the union of
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[ D and the closure of {2} is wholly contained within the circle
=1

121--P’ oriented positively, it turns out that the just established re-
lation is valid in the domain {2: p’( 121 oo}. Thus it is found im-
mediately from the above argument that the results in the statement
of the present theorem are valid, except that the second member on
the right of (33) is surely an infinite series.

If we now denote by p0 the greatest lower bound of all positive
numbers p’ satisfying the above-mentioned condition, it is seen that
the relation (33) holds for any fixed point 2 with p0 12] oo and
that there exists on the circle 121 =P0 at least one point $ belonging

to the union of [J D and the closure of {L}. Since, on the other
=1

hand, T(2) is expressible in the form of

(34) T(2)- R(2) 4-, ((2I-- N)-"(f.+f.), (f,-f.))

= =
as stated in the preceding paper, and since, for any positive integer p,

--f 1 dg(z) (j--l, 2, 3, n)(2I-- N#)
(, z)------,

where {K()] denoe he complex peel fmily of he bounded
oml opero N, () enno be bounded n he inereeion of

Consequently neve oeeu8 h

_
vnihe for every positive

integer p greater than some positive constant; that is, ,c_- is

certainly an infinite series: for otherwise T(2) would be bounded in
the intersection stated above and hence would be a point belonging
to the resolvent set of every N# (3"=1, 2, 3,..., n), contrary to the
hypothesis on $.

The theorem has thus been proved.
Theorem 39. Let T(2) be the function in Theorem 38. Then a

necessary and sufficient condition that the ordinary part of T(2) be
a polynomial in 2 of the degree d is that T(,)], tend to a non-zero
finite constant as ]]-

Proof. It is at once obvious by Theorem 38 that the condition
is necessary. If we denote the ordinary part and the sum of the
two principal parts of T() by R() and Z(2) respectively, as before,
and assume that conversely T(,)/, tends to a non-zero finite constant
C as ]21 becomes infinite, then lim R(,)]=C in accordance with The-

orem 38. We now suppose that ] c2- is an infinite power series,

with a view of establishing a contradiction. Then
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-->o) and the function defined by this infinite power series c2"-
with domain {2" 121 < o} would be a transcendental integral function
with isolated essential singularity 2-. Denoting by w a complex
finite constant different from C and two exceptional values at most of
this transcendental integral function, it is therefore found by Picard’s
theorem that there would exist an infinite sequence of complex num-
bers z,z, z,.., outside a suitably large circle with center at the
origin such that

cz, -- ( 1,2,3, ..),

where ]z < ]z <... and }z (Z). This result is, however,

in contradiction with the fact that c-C (]] ). In con-

sequence, the supposition on c- must be rejected; that is, the

condition is sufficient as we wished to prove.
Remark. The right-hand member of (33) converges absolutely

and uniformly in the domain (" p[R<}, however large R
may be.

Theorem 40. Let {}=,,,... be an arbitrarily prescribed bounded
infinite sequence of complex numbers such that its closure never con-
tains zero; let 3, 2,..., _, and be arbitrarily given, connected,
and closed sets in the complex plane such that one of them is not
necessarily bounded, that each of them does not contain the origin
and any point belonging to the closure of {}, and that they are
mutually disjoint; let p be an arbitrarily given positive constant such

that the union of and the closure of {} lies in the domain
=1

{" p<]]}; and let T() be a function satisfying the following con-
ditions:

(i) {} is the set of all non-zero poles of T() in the sense of

the functional analysis and the principal part of T() at is given

by c/(-) where c: < for a-l, 2, 3, ..., m;
a=l

(ii) every point of is a singularity of () in the single
=1

meaning that the image of by the transformation 1/ determines
=1

the second principal part of T(1/) alone;
(iii) the origin is a pole or an isolated essential singularity of

(iv) T() is regular in the entire complex -plane (inclusive of

--) with the exception of the union of the origin, , and the
=1
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(35)
where

closure of {2};
(v) T() has no term with isolated essential singularity in the

domain {" 0< ][}.
Then, in the domain [2" 0< [2[ =<p}, T(2) is expressible in the form

of

T()=c-+c_,
P:>O

1 / T(2-1)
ck= 2zci

=/
,/

d (k--0, +/-1, +/-2,..., i--/1)

for the positively oriented circle ]21-1/p; and moreover c2, with
p0

domain {" ] }, associated with the first member on the right

of (35) expresses the ordinary part (2) of (1/2) and is a finite or

an infinite series according as R() is a polynomial in or a trans-

cendental integral function, while c_;-;, with domain {" 1/p][},

associated with the second member on the right of (35)expresses
the sum of the two principal parts of T(1/2) and is essentially an
infinite series.

Proof. Let T(2)--T(1/), and let D, D,..., Dn_, and D be the
images of A, A,..., A_, and A by the transformation 1/2 respec-
tively. Then, by hypotheses, {1/}=,:,,... is a bounded infinite sequence,
and moreover its closure and the bounded, connected, and closed sets
D (j=l, 2, 3,..., n) are mutually disjoint. On the other hand, it is
also seen by hypotheses that each 1/ is a pole of T(2) in the sense
of the functional analysis, that T(2) is regular in the entire complex

-plane with the exception of the union of the point 2--, D,
j=l

and the closure of {1/}, that the point 2- is a pole or an isolated
essential singularity of T(), and that T() has not any term with
isolated essential singularity in the domain {2" ]2[ (}. In addition,

if we replace 2 in
(2-2)

by 1/2, it is easily verified by direct

computation that this sum is taken into

--I
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-F (-- 1)"(;)(.2;-"
I -z \m

where, e poee eoeeg c

is absolutely eonvegent in the entie complex l-plane except o
all the points belonging to the closure of {1/I} an moeove

1I;"1 < . These esults imply that the pineipal pat of (i)

at eaeh pole 1/I. in the sense of the fnetional analysis is expesse
in the form bee i eonvegent fo every a-

1,2,8, ..., m. Consequently (2) consists of its ordinary part, its
first principal part, and its second prineipa] part in the sense slated
in the earlier discussion; and it is e]ear that the ordinary part of
(2) is a polynomial in 2 or a transeendenta] integral funetion ae-

cording as zero is a pole or an isolated essential singularity o (2),

that the first principal part of T(2)is given by
(2_2:),

and

that the set of all singularities of T(2) determining completely the

second principal part is given by the union of D and the set of
=1

all those accumulation points of {1/2} which do not belong to {1/2}
itself. Theorem 38 thus leads us to the result that

<
0

where
1 f T()

c=-2i.. ,R+ d (k-0, _+1, _2,...);
I1=

and c2 with domain {2" R < } expresses the ordinary part of
p0

T() and is a finite or an infinite series according as the point =
is a pole or an isolated essential singularity of T(1), while c_-p=l

expresses the sum of the two principal parts of T() in the domain
{i" 1/pg 11} and hence is surely an infinite series. Accordingly it
is at once obvious that the present theorem is an immediate conse-
quence of these results.

The proof of the theorem is thus complete.


