159. Remarks on Ninomiya's Domination Principle

By Masayuki Itô

Mathematical Institute, Nagoya University (Comm. by Kinjirô Kunugi, M.J.A., Nov. 12, 1964)

1. Introduction. In the *n*-dimensional Euclidean space R^n $(n \ge 1)$, the potential of a given order α , $0 < \alpha < n$, of a measure μ in R^n is defined by

$$U^{\mu}_{\alpha}(x) = \int |x-y|^{\alpha-n} d\mu(y),$$

provided the integral on the right exists. The kernel $|x-y|^{\alpha-n}$ will be called the kernel of order α . Let μ be a measure in \mathbb{R}^n . When the integral

$$\int \int |x-y|^{\alpha-n} d\mu(y) d\mu(x)$$

exists, we shall call it the α -energy of μ . We shall denote the inner capacity of a set A with respect to the kernel of order α by $C_{\alpha}(A)$. A property is said to hold α -p.p.p. on a subset X in R^n , when the property holds on X except a set E with $C_{\alpha}(E)=0$. The measure μ in R^n will be said to be α -finite, when the potential $U_{\alpha}^{\mu}(x)$ is defined and finite α -p.p.p. in R^n . We shall denote the support of a measure μ in R^n by S_{μ} .

Ninomiya [3] proved the following domination principle.

In R^n $(n \ge 3)$, let α be a positive number such that $0 < \alpha \le 2$, let μ be a positive measure with compact support such that the α -energy is finite, and let ν be a positive measure in R^n . If

$$U_{\alpha}^{\mu}(x) \leq U_{\alpha}^{\nu}(x)$$
 on S_{μ} ,

then

$$U^{\mu}_{\beta}(x) \leq U^{\nu}_{\beta}(x)$$
 in R^n

for any β such that $\alpha \leq \beta < n$.

He proved that the same domination principle is valid in R^2 if $0 < \alpha \le 1$. In this paper, we shall prove Ninomiya's domination principle in a possibly general form.

2. Ninomiya's domination principle. Lemma.\(^1\) In R^n $(n \ge 1)$, let α be a positive number such that $0 < \alpha \le 2$, $0 < \alpha < 2$ or $0 < \alpha < 1$ according to $n \ge 3$, n = 2 or n = 1. Then the kernel of order α satisfies the balayage principle with respect to the kernel of order β for any β such that $\alpha \le \beta < n$, namely, for any p in R^n and any closed set F, there exists a positive measure λ , supported by F, such that

$$U_{\alpha}(x) = |x-p|^{\beta-n}$$
 α -p.p.p. on F ,

¹⁾ Ninomiya (Theorem 2 in [3]) showed this when $n \ge 3$ and F is compact.

$$U_{\alpha}(x) \leq |x-p|^{\beta-n}$$
 in \mathbb{R}^n .

Proof. To avoid the trivial case, we assume that $C_{\alpha}(F) > 0$ and $\alpha < \beta$. By the formula of Riesz,²

$$\int |x-y|^{\alpha-n}|y-p|^{(\beta-\alpha)-n}dy = K_{\alpha,\beta-\alpha}|x-p|^{\beta-n}$$

where

$$K_{\scriptscriptstyle{\alpha,\,\beta-\alpha}} \!=\! \pi^{\frac{n}{2}} \frac{\Gamma\!\left(\frac{\alpha}{2}\right) \Gamma\!\left(\frac{\beta-\alpha}{2}\right) \Gamma\!\left(\frac{n-\beta}{2}\right)}{\Gamma\!\left(\frac{n-\alpha}{2}\right) \Gamma\!\left(\frac{n-\beta+\alpha}{2}\right) \Gamma\!\left(\frac{\beta}{2}\right)}.$$

Consider the following positive measure

$$\frac{1}{K_{\alpha,\beta-\alpha}}|y-p|^{(\beta-\alpha)-n}dy.$$

This is α -finite, so that by the theorem of Riesz,³ there exists its balayaged measure λ to F. Consequently

$$U_{\alpha}(x) = |x-p|^{\beta-n}$$
 a-p.p.p. on F , $U_{\alpha}(x) \le |x-p|^{\beta-n}$ in R^n .

By this lemma, we obtain the following

Theorem 1.4) In R^n $(n \ge 1)$, let α be a positive number such that $0 < \alpha \le 2$, $0 < \alpha < 2$ or $0 < \alpha < 1$ according to $n \ge 3$, n = 2 or n = 1, let μ be a positive measure such that the α -energy is finite, and let ν be a positive measure in R^n . If

$$U_{\alpha}^{\mu}(x) \leq U_{\alpha}^{\nu}(x)$$
 on S_{μ} ,

then

$$U_{\beta}^{\mu}(x) \leq U_{\beta}^{\nu}(x)$$
 in R^n

for any β such that $\alpha \leq \beta < n$.

Proof. Let p be a point in R^n . By the above lemma, there exists a positive measure λ , supported by S_{μ} , such that

$$U_{a}^{\lambda}(x)\!=\!|x-p|^{eta-n}\qquad lpha\!-\!p.p.p.$$
 on S_{μ} , $U_{a}^{\lambda}(x)\!\leq\!|x-p|^{eta-n}\qquad ext{in }R^{n}.$

Since the α -energy of μ is finite, $\mu(A) = 0$ for any set A with $C_{\alpha}(A) = 0$. Hence

$$egin{aligned} U_{eta}^{\mu}(p) &= \int |x-p|^{eta-n} d\mu(x) = \int U_{a}^{\lambda}(x) d\mu(x) \ &= \int U_{a}^{\mu}(x) d\lambda(x) \leq \int U_{a}^{\nu}(x) d\lambda(x) \ &= \int U_{a}^{\lambda}(x) d\nu(x) \leq \int |x-p|^{eta-n} d\nu(x) \ &= U_{eta}^{\nu}(p). \end{aligned}$$

This completes the proof.

²⁾ Cf. [1], p. 151.

³⁾ Cf. [4], pp. 21-22.

⁴⁾ Ninomiya [3] proved this in the case that $n \ge 3$ and S_{μ} is compact.

Another form of Ninomiya's domination principle is the following Theorem 2.5 In R^n $(n \ge 1)$, let α be a positive number such that $0 < \alpha \le 2$, $0 < \alpha < 2$, and $0 < \alpha < 1$ according to $n \ge 3$, n = 2 or n = 1, and let β be a positive number such that $\alpha \le \beta < n$. Let μ be a positive measure such that the α -energy is finite, and let ν be a positive measure in R^n . If

$$U^{\mu}_{\alpha}(x) \leq U^{\nu}_{\beta}(x)$$
 on S_{μ} ,

then

$$U^{\mu}_{\alpha}(x) \leq U^{\nu}_{\beta}(x)$$
 in \mathbb{R}^n .

Proof. By virtue of Theorem 1 we may assume that $\alpha < \beta$. Let p be a point in CS_{μ} . By the above lemma, there exists a positive measure λ such that

$$U_{\alpha}^{\lambda}(x) = |x-p|^{\alpha-n}$$
 α - $p.p.p.$ on S_{μ} , $U_{\alpha}^{\lambda}(x) \le |x-p|^{\alpha-n}$ in R^{n} .

Then

$$egin{aligned} U_{lpha}^{\mu}(p) &= \int U_{lpha}^{\lambda}(x) d\,\mu(x) = \int U_{lpha}^{\mu}(x) d\,\lambda(x) \leq \int U_{eta}^{
u}(x) d\,\lambda(x) \\ &= \int U_{eta}^{\lambda}(x) d\,
u(x). \end{aligned}$$

On the other hand

$$egin{aligned} U_{eta}^{\lambda}(x) &= \int |x-y|^{eta-n} d\lambda(y) \ &= rac{1}{K_{lpha,\;eta-lpha}} \int \int |x-z|^{(eta-lpha)-n} |y-z|^{lpha-n} dz \, d\lambda(y) \ &= rac{1}{K_{lpha,\;eta-lpha}} \int \int |x-z|^{(eta-lpha)-n} |y-z|^{lpha-n} d\lambda(y) dz \ &\leq rac{1}{K_{lpha,\;eta-lpha}} \int |x-z|^{(eta-lpha)-n} |p-z|^{lpha-n} dz \ &= |x-p|^{eta-n}. \end{aligned}$$

Consequently

$$\int U_{\beta}^{\lambda}(x)d\nu(x)\!\leq\!\int\!|x-p|^{\beta-n}d\nu(x)\!=U_{\beta}^{\nu}(p).$$

This completes the proof.

By using Theorem 2 and Ninomiya's general theory [2], we obtain the following

Proposition. In R^n $(n \ge 1)$, let α be a positive number such that $0 < \alpha \le 2$, $0 < \alpha < 2$ or $0 < \alpha < 1$ according to $n \ge 3$, n = 2 or n = 1, and let β be a positive number such that $\alpha \le \beta < n$. Then for any β -finite positive measure μ and any closed set F, there exists a positive measure μ' , supported by F, such that

$$U_{\alpha}^{\mu\prime}(x) = U_{\beta}^{\mu}(x)$$
 α -p.p.p. on F , $U_{\alpha}^{\mu\prime}(x) \leq U_{\beta}^{\mu}(x)$ in R^{n} .

⁵⁾ Ninomiya [3] proved this in the case that $n \ge 3$ and S_{μ} is compact.

⁶⁾ Ninomiya [3] proved this in the case that $n \ge 3$ and F is compact.

References

- [1] J. Deny: Les potentiels d'énergie finie. Acta Math., 82, 107-183 (1950).
- [2] N. Ninomiya: Sur le problème du balayage généralisé. Jour. Math., Osaka City Univ., 12, 115-138 (1961).
- [3] —: Sur un principe du maximum pour la potentiel du Riesz-Frostman. Ibid., 13, 57-62 (1962).
- [4] M. Riesz: Intégrales de Riemann-Liouville et potentiels. Acta Sci. Math., Szeged, 9, 1-42 (1938).