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174. A Tauberian Theorem for (J, p,) Summability*

By Kazuo ISHIGURO
Department of Mathematics, Hokkaido University, Sapporo
(Comm. by Kinjiré KUNUGI, M.J.A,, Dec. 12, 1964)

§1. We suppose throughout that
P20, % P,=oo,
and that the radius of convergence of the power series
p(x)= i__} D"

is 1. Given any series

(1) s
with the sequence of partial sums {s,}, we shall use the notation:
(2) Dy()= % DaSp".
If the series (2) is convergent in the open interval (0, 1), and if
m P®)_ o
e=1-0 (%)

we say that the series Z,a or the sequence {s,} is smmable (J, p,)

to s. As is well known, thls method of summability is regular. (See,
Borwein [1], Hardy [2], p. 80.)
Now we write
Pn:p0+p1+ cr e Dy, n:()’ 1’ M)
and

(3) vasw %_—-01 1’“',

n v=0

with p,>0. If {¢,} is convergent to s, we say that the series f] a,
n=0

or the sequence {s,} is summable (N, p,) to s. This method of sum-
mability is also regular, and is equivalent to the Riesz method
(R, P,_,, 1). (See, Hardy [2], pp. 57, 86, Jurkat [4], Kuttner [5,6].)
We shall first state the following
Theorem 1. (N, p,) implies® (J, p,).

*)  Dedicated to Professor Kinjird Kunugi for his 60th Birthday.

1) Given two summability methods A, B, we say that A implies B if any series
or sequence summable A is summable B to the same sum. We say that A is
equivalent to B if A implies B and B implies A.
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The proof of this theorem may be deduced from a general theorem,
however we shall give here a sketch of a brief proof. (See, e.g.,
Hobson [3], p. 181.)

From (3) we get

tnPn—tn—IPn—lzpnsm n:O, 1: M)
with ¢ ,=P_,=0. Hence
pa(x)zngo pnsnwn
= i (tnPn—tn—an—l)x”
n=0
=(1—2) 3, t,P,0"
n=0

from the assumption of the theorem. Now since

208(0{;)_(1 x)Zth”
p(x) "é‘s pnxn
3P _ P

T a,.. Pa’
%P,,w

we have, again from the assumption of the theorem,
Po(®) _ yin Pul®)
A ) Ay
which proves the theorem.
§2. Concerning the (N, p,) summability we know the following
Tauberian
Theorem 2. Suppose that

>O’ ’H,_—’O, 11 ct

ol

and that the series (1) is summable (R, P,, 1). Then (1) converges to
the same sum. (See, Hardy [2], p.124.)

Since (N, p,) implies (J, p,), we can expect Tauberian theorems
of the similar type for the (J, p,) summability. We shall prove here
the following

Theorem 3. Suppose that

m

(4) = —=0(1) for m—oo,
SE ( ;—ln)

that
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that
(5) 0<anM’ ??/:0, 19 %y
with some constant M, and that
6 * — o).
(6) P (1)
Suppose that the series (1) is summable (J, p,) to s, and that
—of Pn
(7) av=o( 2 ).

n

Then (1) converges to s.
Proof. We have, for 0<x<1,

o

Sp D, 2" ws,, "
o D) _ BT B P

p@) S par Spar
n=0 n=0

n§=:(l) (sm - sn)pfnx”

gﬁpnw"
m—1 oo
2 (Sn—8)pa" >, (Sp—8,)p,a"
.____n=0 +n=m+1
IV 2 D"
=TI+J, say.
Here we get
m—1
IIIS n=0 ~
g})pnw”
<— 1 {pllalplpo +p2|a2!(§o+p1)+ cee o
n 1 2
gpnx
4p, L0l @ADA v e D) }
Dm
and therefore, when x=1—%,
RPN S R
_— m 1
ig')p”(l m)
+p Ia2lP1 _I_ cee +pm|a’mlpm—1}.
pz pm

Now, from (7), we see
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| @ | Py

Hence, according to (4), we have
(8) I=o0(1) for m—oo,

Next we shall estimate J. For any ¢, €>0, let m be so chosen
that

=o0(1) for m—oo,

|a, | <ePe
P

k2

for n>m, then

{sm—s”|gs{ﬂm+ﬁm+ cee pn}

Pm+1 Pm+2 Pn
=¢eQ,, say.
Therefore we have
_i Q.p.a"
(9) |J |< a1
% %"
z}ﬂwk%

||M8 3
/\

[y

|
l/

1f « be chosen to be equal to 1—%. Since

we get

ey 2.20-)

from (4) and (5). Also, again using (5), we have

2) We use M to denote a constant, possibly different at each occurrence.
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|Jl<eM-L S n(l—i)"

P:t n=m+1 m
(10) SeM?li Smx(1—%;) do
m2
SsM—ﬁZ
<eM,

for large m, from (6).
Letting m increase indefinitely, we have

lim s, = lim Po(®) —g
m—>00 #~1—0 p(x)
from (8) and (10), which proves the theorem.
§ 3. The assumptions of Theorem 3 seem to be very complicated,
however it follows from this theorem the following
Corollary. Suppose that there exist two mumbers o, M such
that

(11) 0<o<p, <M, n=01,---.

Suppose that the series (1) is summable (J, p,) to s, and that
—o( P

(7) an_o<P >

Then (1) converges to s.
Proof. It suffices to prove that (11) implies (4) and (6). From
(11), we see

for large m. Finally we see, from (11),

n n 1
A LA .
P,” (n+1l) < g

for large n. We reach the desired conclusion.
Remark. In the corollary, the condition (7) may be replaced by
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