## 174. A Tauberian Theorem for $(J, p_n)$ Summability\*

## By Kazuo Ishiguro

Department of Mathematics, Hokkaido University, Sapporo (Comm. by Kinjirô Kunugi, M.J.A., Dec. 12, 1964)

## § 1. We suppose throughout that

$$p_n \ge 0$$
,  $\sum_{n=0}^{\infty} p_n = \infty$ ,

and that the radius of convergence of the power series

$$p(x) = \sum_{n=0}^{\infty} p_n x^n$$

is 1. Given any series

$$\sum_{n=0}^{\infty} a_n,$$

with the sequence of partial sums  $\{s_n\}$ , we shall use the notation:

(2) 
$$p_s(x) = \sum_{n=0}^{\infty} p_n s_n x^n$$
.

If the series (2) is convergent in the open interval (0, 1), and if

$$\lim_{x\to 1-0}\frac{p_s(x)}{p(x)}=s,$$

we say that the series  $\sum_{n=0}^{\infty} a_n$  or the sequence  $\{s_n\}$  is smmable  $(J, p_n)$  to s. As is well known, this method of summability is regular. (See, Borwein [1], Hardy [2], p. 80.)

Now we write

$$P_n = p_0 + p_1 + \cdots + p_n$$
,  $n = 0, 1, \cdots$ 

and

(3) 
$$t_{n} = \frac{1}{P_{n}} \sum_{\nu=0}^{n} p_{\nu} s_{\nu}, \quad n = 0, 1, \dots,$$

with  $p_n > 0$ . If  $\{t_n\}$  is convergent to s, we say that the series  $\sum_{n=0}^{\infty} a_n$  or the sequence  $\{s_n\}$  is summable  $(\overline{N}, p_n)$  to s. This method of summability is also regular, and is equivalent to the Riesz method  $(R, P_{n-1}, 1)$ . (See, Hardy [2], pp. 57, 86, Jurkat [4], Kuttner [5,6].)

We shall first state the following

Theorem 1.  $(\bar{N}, p_n)$  implies  $(J, p_n)$ .

<sup>\*)</sup> Dedicated to Professor Kinjirô Kunugi for his 60th Birthday.

<sup>1)</sup> Given two summability methods A, B, we say that A implies B if any series or sequence summable A is summable B to the same sum. We say that A is equivalent to B if A implies B and B implies A.

The proof of this theorem may be deduced from a general theorem, however we shall give here a sketch of a brief proof. (See, e.g., Hobson [3], p. 181.)

From (3) we get

$$t_n P_n - t_{n-1} P_{n-1} = p_n s_n, \quad n = 0, 1, \dots,$$

with  $t_{-1} = P_{-1} = 0$ . Hence

$$egin{aligned} p_s(x) &= \sum\limits_{n=0}^{\infty} \, p_n s_n x^n \ &= \sum\limits_{n=0}^{\infty} \, (t_n P_n - t_{n-1} P_{n-1}) x^n \ &= (1-x) \, \sum\limits_{n=0}^{\infty} \, t_n P_n x^n \end{aligned}$$

from the assumption of the theorem. Now since

$$\frac{p_{s}(x)}{p(x)} = \frac{(1-x)\sum_{n=0}^{\infty} t_{n} P_{n} x^{n}}{\sum_{n=0}^{\infty} p_{n} x^{n}}$$

$$= \frac{\sum_{n=0}^{\infty} t_{n} P_{n} x^{n}}{\sum_{n=0}^{\infty} P_{n} x^{n}} = \frac{P_{t}(x)}{P(x)},$$

we have, again from the assumption of the theorem,

$$\lim_{x\to 1-0} \frac{p_s(x)}{p(x)} = \lim_{x\to 1-0} \frac{P_t(x)}{P(x)} = s,$$

which proves the theorem.

§ 2. Concerning the  $(\bar{N}, p_n)$  summability we know the following Tauberian

Theorem 2. Suppose that

$$p_n > 0, n = 0, 1, \dots,$$

that

$$a_n = O\left(\frac{p_n}{P_n}\right)$$
,

and that the series (1) is summable  $(R, P_n, 1)$ . Then (1) converges to the same sum. (See, Hardy [2], p.124.)

Since  $(\overline{N}, p_n)$  implies  $(J, p_n)$ , we can expect Tauberian theorems of the similar type for the  $(J, p_n)$  summability. We shall prove here the following

Theorem 3. Suppose that

$$\frac{\sum\limits_{n=0}^{m}p_{n}}{\sum\limits_{n=0}^{\infty}p_{n}\left(1-\frac{1}{m}\right)^{n}}=O(1) \qquad for \quad m\longrightarrow\infty\,,$$

that

(5) 
$$0 < p_n \le M, \quad n = 0, 1, \dots,$$

with some constant M, and that

$$(6) \qquad \frac{n}{P_n} = O(1).$$

Suppose that the series (1) is summable  $(J, p_n)$  to s, and that

$$a_n = o\left(\frac{p_n}{P_n}\right).$$

Then (1) converges to s.

*Proof.* We have, for 0 < x < 1,

$$egin{align*} s_{m} - rac{p_{s}(x)}{p(x)} &= rac{\sum\limits_{n=0}^{\infty} s_{m} p_{n} x^{n}}{\sum\limits_{n=0}^{\infty} p_{n} x^{n}} - rac{\sum\limits_{n=0}^{\infty} s_{n} p_{n} x^{n}}{\sum\limits_{n=0}^{\infty} p_{n} x^{n}} \ &= rac{\sum\limits_{n=0}^{\infty} (s_{m} - s_{n}) p_{n} x^{n}}{\sum\limits_{n=0}^{\infty} p_{n} x^{n}} \ &= rac{\sum\limits_{n=0}^{m-1} (s_{m} - s_{n}) p_{n} x^{n}}{\sum\limits_{n=0}^{\infty} p_{n} x^{n}} + rac{\sum\limits_{n=m+1}^{\infty} (s_{m} - s_{n}) p_{n} x^{n}}{\sum\limits_{n=0}^{\infty} p_{n} x^{n}} \ &= I + J. \quad \text{say.} \end{aligned}$$

Here we get

$$egin{aligned} |I| & \leq rac{\sum\limits_{n=0}^{m-1} |s_m\!-\!s_n| \; p_n}{\sum\limits_{n=0}^{\infty} p_n x^n} \ & \leq & rac{1}{\sum\limits_{n=0}^{\infty} p_n x^n} \Big\{ p_1 rac{|a_1| \; p_0}{p_1} + p_2 rac{|a_2| \; (p_0\!+\!p_1)}{p_2} + \; \cdots \; + \ & + p_m rac{|a_m| \; (p_0\!+\!p_1\!+\; \cdots \; + p_{m-1})}{p_m} \Big\}, \end{aligned}$$

and therefore, when  $x=1-\frac{1}{m}$ ,

$$egin{aligned} |I| & \leq & rac{P_m}{\sum\limits_{n=0}^{\infty} p_n \! \left( 1 \! - \! rac{1}{m} 
ight)^n} \! \cdot \! rac{1}{P_m} \! \cdot \! \left\{ p_1 \! rac{|a_1| \, P_0}{p_1} \! + 
ight. \ & + p_2 \! rac{|a_2| \, P_1}{p_2} \! + \cdots + p_m \! rac{|a_m| \, P_{m-1}}{p_m} 
ight\}. \end{aligned}$$

Now, from (7), we see

$$\frac{|a_m|P_{m-1}}{p_m} = o(1) \quad \text{for} \quad m \to \infty.$$

Hence, according to (4), we have

(8) 
$$I=o(1)$$
 for  $m\to\infty$ .

Next we shall estimate J. For any  $\varepsilon$ ,  $\varepsilon > 0$ , let m be so chosen that

$$\mid a_{\scriptscriptstyle n} \mid \leq \varepsilon rac{p_{\scriptscriptstyle n}}{P_{\scriptscriptstyle x}}$$

for n > m, then

$$egin{align} |s_m - s_n| &\leq arepsilon \Big\{ rac{p_{m+1}}{P_{m+1}} + rac{p_{m+2}}{P_{m+2}} + \cdots + rac{p_n}{P_n} \Big\} \ &= arepsilon Q_n, \quad ext{say.} \end{split}$$

Therefore we have

$$\begin{array}{c} \mid J \mid \leq \frac{\varepsilon \sum\limits_{n=m+1}^{\infty}Q_{n}p_{n}x^{n}}{\sum\limits_{n=0}^{\infty}p_{n}x^{n}} \\ = \frac{\varepsilon \sum\limits_{n=m+1}^{\infty}Q_{n}p_{n}\!\!\left(1\!-\!\frac{1}{m}\right)^{n}}{\sum\limits_{n=0}^{\infty}p_{n}\!\!\left(1\!-\!\frac{1}{m}\right)^{n}} \;, \end{array}$$

If x be chosen to be equal to  $1-\frac{1}{m}$ . Since

$$Q_n \leq \frac{P_n - P_m}{P_m} = \frac{P_n}{P_m} - 1,$$

we get

$$\begin{split} \mid J \mid & \leq \frac{\varepsilon \frac{1}{P_m} \sum\limits_{n=m+1}^{\infty} P_n p_n \Big(1 - \frac{1}{m}\Big)^n}{\sum\limits_{n=0}^{\infty} p_n \Big(1 - \frac{1}{m}\Big)^n} \\ & = \frac{\varepsilon P_m \frac{1}{P_m^2} \sum\limits_{n=m+1}^{\infty} P_n p_n \Big(1 - \frac{1}{m}\Big)^n}{\sum\limits_{n=0}^{\infty} p_n \Big(1 - \frac{1}{m}\Big)^n} \\ & \leq \varepsilon M \frac{1}{P_m^2} \sum\limits_{n=m+1}^{\infty} P_n \Big(1 - \frac{1}{m}\Big)^{n \cdot 2} \end{split}$$

from (4) and (5). Also, again using (5), we have

<sup>2)</sup> We use M to denote a constant, possibly different at each occurrence.

$$|J| \leq \varepsilon M \frac{1}{P_m^2} \sum_{n=m+1}^{\infty} n \left(1 - \frac{1}{m}\right)^n$$

$$\leq \varepsilon M \frac{1}{P_m^2} \int_m^{\infty} x \left(1 - \frac{1}{m}\right)^x dx$$

$$\leq \varepsilon M \frac{m^2}{P_m^2}$$

$$\leq \varepsilon M,$$

for large m, from (6).

Letting m increase indefinitely, we have

$$\lim_{m\to\infty} s_m = \lim_{x\to 1-0} \frac{p_s(x)}{p(x)} = s$$

from (8) and (10), which proves the theorem.

§ 3. The assumptions of Theorem 3 seem to be very complicated, however it follows from this theorem the following

Corollary. Suppose that there exist two numbers  $\sigma$ , M such that

$$(11) 0 < \sigma \le p_n \le M, \quad n = 0, 1, \cdots.$$

Suppose that the series (1) is summable  $(J, p_n)$  to s, and that

$$a_n = o\left(\frac{p_n}{P_n}\right).$$

Then (1) converges to s.

**Proof.** It suffices to prove that (11) implies (4) and (6). From (11), we see

$$egin{aligned} rac{\sum\limits_{n=0}^{m}p_n}{\sum\limits_{n=0}^{\infty}p_n\Big(1-rac{1}{m}\Big)^n} \leq & Mrac{m+1}{\sum\limits_{n=0}^{\infty}p_n\Big(1-rac{1}{m}\Big)^n} \ \leq & Mrac{\sum\limits_{n=0}^{\infty}\Big(1-rac{1}{m}\Big)^n}{\sum\limits_{n=0}^{\infty}p_n\Big(1-rac{1}{m}\Big)^n} \ \leq & M \end{aligned}$$

for large m. Finally we see, from (11),

$$\frac{n}{P_n} \le \frac{n}{(n+1)\sigma} < \frac{1}{\sigma}$$

for large n. We reach the desired conclusion.

*Remark.* In the corollary, the condition (7) may be replaced by

$$a_n = o\left(\frac{1}{n}\right)$$
.

## References

- [1] D. Borwein: On methods of summability based on power series. Proc. Roy. Soc. Edinburgh, Sect. A, 64, 342-349 (1957).
- [2] G. H. Hardy: Divergent Series. Oxford (1949).
- [3] E. W. Hobson: The Theory of Functions of a Real Variable and the Theory of Fourier Series. vol. 2. Cambridge (1926).
- [4] W. Jurkat: Über Rieszsche Mittel mit unstetigem Parameter. Math. Z., 55, 8-12 (1952).
- [5] B. Kuttner: A Tauberian theorem for discontinuous Riesz means (I). Jour. London Math. Soc., 38, 189-196 (1963).
- [6] —: A Tauberian theorem for discontinuous Riesz means (II). Ibid., 39, 643-648 (1964).